ترغب بنشر مسار تعليمي؟ اضغط هنا

Memory DoS Attacks in Multi-tenant Clouds: Severity and Mitigation

179   0   0.0 ( 0 )
 نشر من قبل Tianwei Zhang
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In cloud computing, network Denial of Service (DoS) attacks are well studied and defenses have been implemented, but severe DoS attacks on a victims working memory by a single hostile VM are not well understood. Memory DoS attacks are Denial of Service (or Degradation of Service) attacks caused by contention for hardware memory resources on a cloud server. Despite the strong memory isolation techniques for virtual machines (VMs) enforced by the software virtualization layer in cloud servers, the underlying hardware memory layers are still shared by the VMs and can be exploited by a clever attacker in a hostile VM co-located on the same server as the victim VM, denying the victim the working memory he needs. We first show quantitatively the severity of contention on different memory resources. We then show that a malicious cloud customer can mount low-cost attacks to cause severe performance degradation for a Hadoop distributed application, and 38X delay in response time for an E-commerce website in the Amazon EC2 cloud. Then, we design an effective, new defense against these memory DoS attacks, using a statistical metric to detect their existence and execution throttling to mitigate the attack damage. We achieve this by a novel re-purposing of existing hardware performance counters and duty cycle modulation for security, rather than for improving performance or power consumption. We implement a full prototype on the OpenStack cloud system. Our evaluations show that this defense system can effectively defeat memory DoS attacks with negligible performance overhead.



قيم البحث

اقرأ أيضاً

Deep learning (DL) is becoming increasingly popular in several application domains and has made several new application features involving computer vision, speech recognition and synthesis, self-driving automobiles, drug design, etc. feasible and acc urate. As a result, large scale on-premise and cloud-hosted deep learning platforms have become essential infrastructure in many organizations. These systems accept, schedule, manage and execute DL training jobs at scale. This paper describes the design, implementation and our experiences with FfDL, a DL platform used at IBM. We describe how our design balances dependability with scalability, elasticity, flexibility and efficiency. We examine FfDL qualitatively through a retrospective look at the lessons learned from building, operating, and supporting FfDL; and quantitatively through a detailed empirical evaluation of FfDL, including the overheads introduced by the platform for various deep learning models, the load and performance observed in a real case study using FfDL within our organization, the frequency of various faults observed including unanticipated faults, and experiments demonstrating the benefits of various scheduling policies. FfDL has been open-sourced.
Container technologies have been evolving rapidly in the cloud-native era. Kubernetes, as a production-grade container orchestration platform, has been proven to be successful at managing containerized applications in on-premises datacenters. However , Kubernetes lacks sufficient multi-tenant supports by design, meaning in cloud environments, dedicated clusters are required to serve multiple users, i.e., tenants. This limitation significantly diminishes the benefits of cloud computing, and makes it difficult to build multi-tenant software as a service (SaaS) products using Kubernetes. In this paper, we propose Virtual-Cluster, a new multi-tenant framework that extends Kubernetes with adequate multi-tenant supports. Basically, VirtualCluster provides both control plane and data plane isolations while sharing the underlying compute resources among tenants. The new framework preserves the API compatibility by avoiding modifying the Kubernetes core components. Hence, it can be easily integrated with existing Kubernetes use cases. Our experimental results show that the overheads introduced by VirtualCluster, in terms of latency and throughput, is moderate.
Deep learning (DL), a form of machine learning, is becoming increasingly popular in several application domains. As a result, cloud-based Deep Learning as a Service (DLaaS) platforms have become an essential infrastructure in many organizations. Thes e systems accept, schedule, manage and execute DL training jobs at scale. This paper explores dependability in the context of a DLaaS platform used in IBM. We begin by explaining how DL training workloads are different, and what features ensure dependability in this context. We then describe the architecture, design and implementation of a cloud-based orchestration system for DL training. We show how this system has been architected with dependability in mind while also being horizontally scalable, elastic, flexible and efficient. We also present an initial empirical evaluation of the overheads introduced by our platform, and discuss tradeoffs between efficiency and dependability.
Deep learning models are increasingly used for end-user applications, supporting both novel features such as facial recognition, and traditional features, e.g. web search. To accommodate high inference throughput, it is common to host a single pre-tr ained Convolutional Neural Network (CNN) in dedicated cloud-based servers with hardware accelerators such as Graphics Processing Units (GPUs). However, GPUs can be orders of magnitude more expensive than traditional Central Processing Unit (CPU) servers. These resources could also be under-utilized facing dynamic workloads, which may result in inflated serving costs. One potential way to alleviate this problem is by allowing hosted models to share the underlying resources, which we refer to as multi-tenant inference serving. One of the key challenges is maximizing the resource efficiency for multi-tenant serving given hardware with diverse characteristics, models with unique response time Service Level Agreement (SLA), and dynamic inference workloads. In this paper, we present Perseus, a measurement framework that provides the basis for understanding the performance and cost trade-offs of multi-tenant model serving. We implemented Perseus in Python atop a popular cloud inference server called Nvidia TensorRT Inference Server. Leveraging Perseus, we evaluated the inference throughput and cost for serving various models and demonstrated that multi-tenant model serving led to up to 12% cost reduction.
Web application performance is heavily reliant on the hit rate of memory-based caches. Current DRAM-based web caches statically partition their memory across multiple applications sharing the cache. This causes under utilization of memory which negat ively impacts cache hit rates. We present Memshare, a novel web memory cache that dynamically manages memory across applications. Memshare provides a resource sharing model that guarantees private memory to different applications while dynamically allocating the remaining shared memory to optimize overall hit rate. Todays high cost of DRAM storage and the availability of high performance CPU and memory bandwidth, make web caches memory capacity bound. Memshares log-structured design allows it to provide significantly higher hit rates and dynamically partition memory among applications at the expense of increased CPU and memory bandwidth consumption. In addition, Memshare allows applications to use their own eviction policy for their objects, independent of other applications. We implemented Memshare and ran it on a week-long trace from a commercial memcached provider. We demonstrate that Memshare increases the combined hit rate of the applications in the trace by an 6.1% (from 84.7% hit rate to 90.8% hit rate) and reduces the total number of misses by 39.7% without affecting system throughput or latency. Even for single-tenant applications, Memshare increases the average hit rate of the current state-of-the-art memory cache by an additional 2.7% on our real-world trace.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا