ﻻ يوجد ملخص باللغة العربية
The ground state and transport properties of the Lieb lattice flat band in the presence of an attractive Hubbard interaction are considered. It is shown that the superfluid weight can be large even for an isolated and strictly flat band. Moreover the superfluid weight is proportional to the interaction strength and to the quantum metric, a band structure invariant obtained from the flat-band Bloch functions. These predictions are amenable to verification with ultracold gases and may explain the anomalous behaviour of the superfluid weight of high-Tc superconductors.
We propose an ultracold-atom setting where a fermionic superfluidity with attractive s-wave interaction is uploaded in a non-Hermitian Lieb optical lattice. The existence of a real-energy flat band solution is revealed. We show that the interplay bet
We obtain a phase diagram of the spin imbalanced Hubbard model on the Lieb lattice, which is known to feature a flat band in its single-particle spectrum. Using the BCS mean-field theory for multiband systems, we find a variety of superfluid phases w
Geometric frustration of particle motion in a kagome lattice causes the single-particle band structure to have a flat s-orbital band. We probe this band structure by exciting a Bose-Einstein condensate into excited Bloch states of an optical kagome l
Attractive interaction between spinless fermions in a two-dimensional lattice drives the formation of a topological superfluid. But the topological phase is dynamically unstable towards phase separation when the system has a high density of states an
We discuss the emergence of p-wave superfluidity of identical atomic fermions in a two-dimensional optical lattice. The optical lattice potential manifests itself in an interplay between an increase in the density of states on the Fermi surface and t