ﻻ يوجد ملخص باللغة العربية
We introduce a potentially powerful method for constraining or discovering a thin dark matter disk in the Milky Way. The method relies on the relationship between the midplane densities and scale heights of interstellar gas being determined by the gravitational potential, which is sensitive to the presence of a dark disk. We show how to use the interstellar gas parameters to set a bound on a dark disk and discuss the constraints suggested by the current data. However, current measurements for these parameters are discordant, with the uncertainty in the constraint being dominated by the molecular hydrogen midplane density measurement, as well as by the atomic hydrogen velocity dispersion measurement. Magnetic fields and cosmic ray pressure, which are expected to play a role, are uncertain as well. The current models and data are inadequate to determine the disks existence, but, taken at face value, may favor its existence depending on the gas parameters used.
We update the method of the Holmberg & Flynn (2000) study, including an updated model of the Milky Ways interstellar gas, radial velocities, an updated reddening map, and a careful statistical analysis, to bound the allowed surface density and scale
We present the serendipitous discovery of an extremely broad ($Delta V_{LSR} sim 150$ km/s), faint ($T_{mb} < 10 textrm{mK}$), and ubiquitous 1667 and 1665 MHz ground-state thermal OH emission towards the 2nd quadrant of the outer Galaxy ($R_{gal}$ >
Stars and planets are formed inside dense interstellar molecular clouds, by processes imprinted on the 3-dimensional (3D) morphology of the clouds. Determining the 3D structure of interstellar clouds remains challenging, due to projection effects and
A thick dark matter disk is predicted in cold dark matter simulations as the outcome of the interaction between accreted satellites and the stellar disk in Milky Way sized halos. We study the effects of a self-interacting thick dark disk on the energ
Interstellar dark clouds are the sites of star formation. Their main component, dihydrogen, exists under two states, ortho and para. H2 is supposed to form in the ortho:para ratio (OPR) of 3:1 and to subsequently decay to almost pure para-H2 (OPR <=