ترغب بنشر مسار تعليمي؟ اضغط هنا

Suppression of spin-exciton state in hole overdoped iron-based superconductors

109   0   0.0 ( 0 )
 نشر من قبل Chul-Ho Lee
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mechanism of Cooper pair formation in iron-based superconductors remains a controversial topic. The main question is whether spin or orbital fluctuations are responsible for the pairing mechanism. To solve this problem, a crucial clue can be obtained by examining the remarkable enhancement of magnetic neutron scattering signals appearing in a superconducting phase. The enhancement is called spin resonance for a spin fluctuation model, in which their energy is restricted below twice the superconducting gap value (2Ds), whereas larger energies are possible in other models such as an orbital fluctuation model. Here we report the doping dependence of low-energy magnetic excitation spectra in Ba1-xKxFe2As2 for 0.5<x<0.84 studied by inelastic neutron scattering. We find that the behavior of the spin resonance dramatically changes from optimum to overdoped regions. Strong resonance peaks are observed clearly below 2Ds in the optimum doping region, while they are absent in the overdoped region. Instead, there is a transfer of spectral weight from energies below 2Ds to higher energies, peaking at values of 3Ds for x = 0.84. These results suggest a reduced impact of magnetism on Cooper pair formation in the overdoped region.



قيم البحث

اقرأ أيضاً

Understanding the overall features of magnetic excitation is essential for clarifying the mechanism of Cooper pair formation in iron-based superconductors. In particular, clarifying the relationship between magnetism and superconductivity is a centra l challenge because magnetism may play a key role in their exotic superconductivity. BaFe2As2 is one of ideal systems for such investigation because its superconductivity can be induced in several ways, allowing a comparative examination. Here we report a study on the spin fluctuations of the hole-overdoped iron-based superconductors Ba1-xKxFe2As2 (x = 0.5 and 1.0; Tc = 36 K and 3.4 K, respectively) over the entire Brillouin zone using inelastic neutron scattering. We find that their spin spectra consist of spin wave and chimney-like dispersions. The chimney-like dispersion can be attributed to the itinerant character of magnetism. The band width of the spin wave-like dispersion is almost constant from the non-doped to optimum-doped region, which is followed by a large reduction in the overdoped region. This suggests that the superconductivity is suppressed by the reduction of magnetic exchange couplings, indicating a strong relationship between magnetism and superconductivity in iron-based superconductors.
215 - A. M. Zhang , Q. M. Zhang 2012
Iron-based superconducting layered compounds have the second highest transition temperature after cuprate superconductors. Their discovery is a milestone in the history of high-temperature superconductivity and will have profound implications for hig h-temperature superconducting mechanism as well as industrial applications. Raman scattering has been extensively applied to correlated electron systems including the new superconductors due to its unique ability to probe multiple primary excitations and their coupling. In this review, we will give a brief summary of the existing Raman experiments in the iron-based materials and their implication for pairing mechanism in particular. And we will also address some open issues from the experiments.
202 - Wei-Guo Yin , Chi-Cheng Lee , 2012
We examine the relevance of several major material-dependent parameters to the magnetic softness in iron-base superconductors by first-principles electronic structure analysis of their parent compounds. The results are explained in the spin-fermion m odel where localized spins and orbitally degenerate itinerant electrons coexist and are coupled by Hunds rule coupling. We found that the difference in the strength of the Hunds rule coupling term is the major material-dependent microscopic parameter for determining the ground-state spin pattern. The magnetic softness in iron-based superconductors is essentially driven by the competition between the double-exchange ferromagnetism and the superexchange antiferromagnetism.
198 - B. Xu , Y. M. Dai , H. Xiao 2016
In iron-based superconductors, a spin-density-wave (SDW) magnetic order is suppressed with doping and unconventional superconductivity appears in close proximity to the SDW instability. The optical response of the SDW order shows clear gap features: substantial suppression in the low-frequency optical conductivity, alongside a spectral weight transfer from low to high frequencies. Here, we study the detailed temperature dependence of the optical response in three different series of the Ba122 system [Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_{2}$, Ba(Fe$_{1-x}$Co$_{x}$)$_{2}$As$_{2}$ and BaFe$_{2}$(As$_{1-x}$P$_{x}$)$_{2}$]. Intriguingly, we found that the suppression of the low-frequency optical conductivity and spectral weight transfer appear at a temperature $T^{ast}$ much higher than the SDW transition temperature $T_{SDW}$. Since this behavior has the same optical feature and energy scale as the SDW order, we attribute it to SDW fluctuations. Furthermore, $T^{ast}$ is suppressed with doping, closely following the doping dependence of the nematic fluctuations detected by other techniques. These results suggest that the magnetic and nematic orders have an intimate relationship, in favor of the magnetic-fluctuation-driven nematicity scenario in iron-based superconductors.
Using a variational Monte Carlo method, we investigate the nematic state in iron-base superconductors based on a three-band Hubbard model. Our results demonstrate that the nematic state, formed by introducing an anisotropic hopping order into the pro jected wave function, can arise in the underdoped regime when a realistic off-site Coulomb interaction $V$ is considered. {color {red} We demonstrate that the off-site Coulomb interaction $V$, which is neglected so far in the analysis of iron-base superconductors, make a dominant contribution to the stabilization of nematic state. We calculate the doping dependencies of the anisotropic properties such as the unequal occupation of $d_{xz}$ and $d_{yz}$ orbitals, anisotropies of kinetic energy and spin correlations, and show that they are all suppressed upon electron doping, which are consistent with the intrinsic anisotropies observed by optical spectrum measurement and ARPES experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا