ترغب بنشر مسار تعليمي؟ اضغط هنا

Upper limits from five years of blazar observations with the VERITAS Cherenkov telescopes

127   0   0.0 ( 0 )
 نشر من قبل Matteo Cerruti
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E>100 GeV) {gamma}-ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of ~570 hours. The sample includes several unidentified Fermi-Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi-LAT catalog which are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have a spectroscopic distance estimate. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data-set, which shows a 4 {sigma} excess.



قيم البحث

اقرأ أيضاً

We search for signatures of planets in 43 intensively monitored microlensing events that were observed between 1995 and 1999. Planets would be expected to cause a short duration (~1 day) deviation on the smooth, symmetric light curve produced by a si ngle-lens. We find no such anomalies and infer that less than 1/3 of the ~0.3 M_sun stars that typically comprise the lens population have Jupiter-mass companions with semi-major axes in the range of 1.5 AU <a < 4 AU. Since orbital periods of planets at these radii are 3-15 years, the outer portion of this region is currently difficult to probe with any other technique.
We report new observations of the intermediate-frequency peaked BL Lacertae object 3C 66A with the MAGIC telescopes. The data sample we use were taken in 2009 December and 2010 January, and comprises 2.3 hr of good quality data in stereoscopic mode. In this period, we find a significant signal from the direction of the blazar 3C 66A. The new MAGIC stereoscopic system is shown to play an essential role for the separation between 3C 66A and the nearby radio galaxy 3C 66B, which is at a distance of only $6^prime$. The derived integral flux above $100eh{GeV}$ is 8.3% of Crab Nebula flux and the energy spectrum is reproduced by a power law of photon index $3.64 pm 0.39_{rm stat} pm 0.25_{rm sys}$. Within errors, this is compatible with the one derived by VERITAS in 2009. From the spectra corrected for absorption by the extragalactic background light, we only find small differences between the four models that we applied, and constrain the redshift of the blazar to $z < 0.68$.
We present very-high-energy $gamma$-ray observations of the BL Lac object 1ES 2344+514 taken by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) between 2007 and 2015. 1ES 2344+514 is detected with a statistical significance abov e background of $20.8sigma$ in $47.2$ hours (livetime) of observations, making this the most comprehensive very-high-energy study of 1ES 2344+514 to date. Using these observations the temporal properties of 1ES 2344+514 are studied on short and long times scales. We fit a constant flux model to nightly- and seasonally-binned light curves and apply a fractional variability test, to determine the stability of the source on different timescales. We reject the constant-flux model for the 2007-2008 and 2014-2015 nightly-binned light curves and for the long-term seasonally-binned light curve at the $> 3sigma$ level. The spectra of the time-averaged emission before and after correction for attenuation by the extragalactic background light are obtained. The observed time-averaged spectrum above 200 GeV is satisfactorily fitted (${chi^2/NDF = 7.89/6}$) by a power-law function with index $Gamma = 2.46 pm 0.06_{stat} pm 0.20_{sys} $ and extends to at least 8 TeV. The extragalactic-background-light-deabsorbed spectrum is adequately fit (${chi^2/NDF = 6.73/6}$) by a power-law function with index $Gamma = 2.15 pm 0.06_{stat} pm 0.20_{sys} $ while an F-test indicates that the power-law with exponential cutoff function provides a marginally-better fit ($chi^2/NDF $ = $2.56 / 5 $) at the 2.1$sigma$ level. The source location is found to be consistent with the published radio location and its spatial extent is consistent with a point source.
The intermediate-frequency peaked BL Lacertae (IBL) object 3C 66A is detected during 2007 - 2008 in VHE (very high energy: E > 100 GeV) gamma-rays with the VERITAS stereoscopic array of imaging atmospheric Cherenkov telescopes. An excess of 1791 even ts is detected, corresponding to a significance of 21.2 standard deviations (sigma), in these observations (32.8 hours live time). The observed integral flux above 200 GeV is 6% of the Crab Nebulas flux and shows evidence for variability on the time-scale of days. The measured energy spectrum is characterized by a soft power law with photon index Gamma = 4.1 +- 0.4_stat +- 0.6_sys. The radio galaxy 3C 66B is excluded as a possible source of the VHE emission.
125 - Wystan Benbow 2012
The VERITAS array of 12-m atmospheric-Cherenkov telescopes in southern Arizona began full-scale operations in 2007, and is one of the worlds most-sensitive detectors of astrophysical VHE (E>100 GeV) gamma rays. Approximately 50 blazars are known to e mit VHE photons, and observations of blazars are a major focus of the VERITAS Collaboration. Nearly 2000 hours have been devoted to this program and ~130 blazars have already been observed with the array, in most cases with the deepest-ever VHE exposure. These observations have resulted in 21 detections, including 10 VHE discoveries. Recent highlights of the VERITAS blazar observation program, and the collaborations long-term blazar observation strategy, are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا