ﻻ يوجد ملخص باللغة العربية
Single-photon avalanche photodiode(SPAD) has been widely used in researching of quantum optics. Afterpulsing effect, which is an intrinsic character of SPAD, affects the system performance in most of the experiments and needs to be carefully handled. For a long time, afterpulsing has been presumed to be determined by the pre-ignition avalanche. We studied the afterpulsing effect of a commercial InGaAs/InP SPAD (APD: Princeton Lightwave PGA-300) and demonstrated that its afterpulsing is non-Markov, which has memory effect of the avalanching history. Theoretical analysis and the experimental results clearly indicate that the embodiment of this memory effect is the afterpulsing probability, which increases as the number of ignition-avalanche pulses increase. The conclusion makes the principle of afterpulsing effect clearer and is instructive to the manufacturing processes and afterpulsing evaluation of high-count-rate SPADs. It can also be regarded as an fundamental premise to handle the afterpulsing signals in many applications, such as quantum communication and quantum random number generator.
The single-photon avalanche photodiode(SPAD) has been widely used in research on quantum optics. The afterpulsing effect, which is an intrinsic character of SPAD, affects the system performance in most experiments and needs to be carefully handled. F
We investigated the reset time of superconducting nanowire avalanche photodetectors (SNAPs) based on 30 nm wide nanowires. We studied the dependence of the reset time of SNAPs on the device inductance and discovered that SNAPs can provide a speed-up
Integrated quantum photonics, which allows for the development and implementation of chip-scale devices, is recognized as a key enabling technology on the road towards scalable quantum networking schemes. However, many state-of-the-art integrated qua
We report operation and characterization of a lab-assembled single-photon detector based on commercial silicon avalanche photodiodes (PerkinElmer C30902SH, C30921SH). Dark count rate as low as 5 Hz was achieved by cooling the photodiodes down to -80
We report an automated characterization of a single-photon detector based on commercial silicon avalanche photodiode (PerkinElmer C30902SH). The photodiode is characterized by I-V curves at different illumination levels (darkness, 10 pW and 10 uW), d