ترغب بنشر مسار تعليمي؟ اضغط هنا

Solar models with new low-metal abundances

110   0   0.0 ( 0 )
 نشر من قبل Wuming Yang
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Wuming Yang




اسأل ChatGPT حول البحث

In the last decade, the photospheric abundances of the Sun had been revised several times by many observers. The standard solar models (SSM) constructed with the new low-metal abundances disagree with helioseismic results and detected neutrino fluxes. The solar model problem has been puzzled some stellar physicists for more than ten years. Rotation, enhanced diffusion, convection overshoot, and magnetic fields are used to reconcile the new abundances with helioseismology. The textbf{too} low-helium textbf{subsurface abundance} in enhanced diffusion models can be improved by the mixing caused by rotation and magnetic fields. The problem of the depth of the convective zone in rotating models can be resolved by convection overshoot. Consequently the Asplund-Grevesse-Sauval rotation model including overshooting (AGSR) reproduces the seismically inferred sound-speed and density profiles, and the convection zone depth as well as the Grevesse and Sauval (GS98) model computed before. But this model fails to reproduce the surface helium abundance which is 0.2393 ($2.6$ $sigma$ away from the seismic value) and neutrino fluxes. The magnetic model called AGSM keeps the agreement of the AGSR and improves the prediction of the surface helium abundance. The observed separation ratios $r_{02}$ and $r_{13}$ are reasonably reproduced by AGSM. Moreover, neutrino fluxes calculated by this model are not far from the detected neutrino fluxes and the predictions of previous works.



قيم البحث

اقرأ أيضاً

119 - Wuming Yang 2019
Standard solar models (SSM) constructed in accord with low metal abundances disagree with the seismically inferred results. We constructed rotating solar models with low metal abundances that included enhanced settling and convection overshoot. In on e of our rotating models, textbf{AGSSr2a}, the convection overshoot allowed us to recover the radius of the base of convection zone (CZ) at a level of $1sigma$. The rotational mixing almost completely counteracts the enhanced settling for the surface helium abundance, but only partially for the surface heavy-element abundance. At the level of $1sigma$, the combination of rotation and enhanced settling brings the surface helium abundance into agreement with the seismically inferred value of $0.2485pm0.0035$, and makes the model have better sound-speed and density profiles than SSM constructed in accordance with high metal abundances. The radius of the base of the CZ and the surface helium abundance of textbf{AGSSr2a} are $0.713$ $R_{odot}$ and $0.2472$, respectively; the absolute values of the relative differences in sound speed and density between it and the Sun are less than $0.0025$ and $0.015$, respectively. Moreover, predicted neutrino fluxes of our model are comparable with the predictions of previous research works.
147 - Aldo Serenelli 2009
We construct updated solar models with different sets of solar abundances, including the most recent determinations by Asplund et al. (2009). The latter work predicts a larger ($sim 10%$) solar metallicity compared to previous measurements by the sam e authors but significantly lower ($sim 25%$) than the recommended value from a decade ago by Grevesse & Sauval (1998). We compare the results of our models with determinations of the solar structure inferred through helioseismology measurements. The model that uses the most recent solar abundance determinations predicts the base of the solar convective envelope to be located at $R_{rm CZ}= 0.724{rm R_odot}$ and a surface helium mass fraction of $Y_{rm surf}=0.231$. These results are in conflict with helioseismology data ($R_{rm CZ}= 0.713pm0.001{rm R_odot}$ and $Y_{rm surf}=0.2485pm0.0035$) at 5$-sigma$ and 11$-sigma$ levels respectively. Using the new solar abundances, we calculate the magnitude by which radiative opacities should be modified in order to restore agreement with helioseismology. We find that a maximum change of $sim 15%$ at the base of the convective zone is required with a smooth decrease towards the core, where the change needed is $sim 5%$. The required change at the base of the convective envelope is about half the value estimated previously. We also present the solar neutrino fluxes predicted by the new models. The most important changes brought about by the new solar abundances are the increase by $sim 10%$ in the predicted $^{13}$N and $^{15}$O fluxes that arise mostly due to the increase in the C and N abundances in the newly determined solar composition.
178 - W. M. Yang , S. L. Bi 2008
Using reconstructed opacities, we construct solar models with low heavy-element abundance. Rotational mixing and enhanced diffusion of helium and heavy elements are used to reconcile the recently observed abundances with helioseismology. The sound sp eed and density of models where the relative and absolute diffusion coefficients for helium and heavy elements have been increased agree with seismically inferred values at better than the 0.005 and 0.02 fractional level respectively. However, the surface helium abundance of the enhanced diffusion model is too low. The low helium problem in the enhanced diffusion model can be solved to a great extent by rotational mixing. The surface helium and the convection zone depth of rotating model M04R3, which has a surface Z of 0.0154, agree with the seismic results at the levels of 1 $sigma$ and 3 $sigma$ respectively. M04R3 is almost as good as the standard model M98. Some discrepancies between the models constructed in accord with the new element abundances and seismic constraints can be solved individually, but it seems difficult to resolve them as a whole scenario.
328 - Katharina Lodders 2010
Representative abundances of the chemical elements for use as a solar abundance standard in astronomical and planetary studies are summarized. Updated abundance tables for solar system abundances based on meteorites and photospheric measurements are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا