Clumpy dust clouds and extended atmosphere of the AGB star W Hya revealed with VLT/SPHERE-ZIMPOL and VLTI/AMBER


الملخص بالإنكليزية

We present visible polarimetric imaging observations of the well-studied AGB star W Hya taken with VLT/SPHERE-ZIMPOL as well as high spectral resolution long-baseline interferometric observations with the AMBER instrument of the Very Large Telescope Interferometer (VLTI). We observed W Hya with VLT/SPHERE-ZIMPOL at three wavelengths in the continuum (645, 748, and 820 nm), in the Halpha line at 656.3 nm, and in the TiO band at 717 nm. The VLTI/AMBER observations were carried out in the wavelength region of the CO first overtone lines near 2.3 micron with a spectral resolution of 12000. Taking advantage of the polarimetric imaging capability of SPHERE-ZIMPOL combined with the superb adaptive optics performance, we have succeeded in spatially resolving three clumpy dust clouds located at ~50 mas (~2 Rstar) from the central star, revealing dust formation very close to the star. The AMBER data in the individual CO lines suggest a molecular outer atmosphere extending to ~3 Rstar. Furthermore, the SPHERE-ZIMPOL image taken over the Halpha line shows emission with a radius of up to ~160 mas (~7 Rstar). We found that dust, molecular gas, and Halpha-emitting hot gas are coexisting within 2--3 Rstar. Our modeling suggests that the observed polarized intensity maps can reasonably be explained by large (0.4--0.5 micron) grains of Al2O3 or Mg2SiO4 or MgSiO3 in an optically thin shell with an inner boundary radius of 1.9--2.0 Rstar. The observed clumpy structure can be reproduced by a density enhancement by a factor of 4 +/- 1. The grain size derived from our polarimetric images is consistent with the prediction of the hydrodynamical models for the mass loss driven by the scattering due to micron-sized grains. The detection of the clumpy dust clouds close to the star lends support to the dust formation induced by pulsation and large convective cells as predicted by the 3-D simulations for AGB stars.

تحميل البحث