ترغب بنشر مسار تعليمي؟ اضغط هنا

Gating a single-molecule transistor with individual atoms

108   0   0.0 ( 0 )
 نشر من قبل Jes\\'us Mart\\'inez-Blanco
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transistors, regardless of their size, rely on electrical gates to control the conductance between source and drain contacts. In atomic-scale transistors, this conductance is exquisitely sensitive to single electrons hopping via individual orbitals. Single-electron transport in molecular transistors has been previously studied using top-down approaches to gating, such as lithography and break junctions. But atomically precise control of the gate - which is crucial to transistor action at the smallest size scales - is not possible with these approaches. Here, we used individual charged atoms, manipulated by a scanning tunnelling microscope, to create the electrical gates for a single-molecule transistor. This degree of control allowed us to tune the molecule into the regime of sequential single-electron tunnelling, albeit with a conductance gap more than one order of magnitude larger than observed previously. This unexpected behaviour arises from the existence of two different orientational conformations of the molecule, depending on its charge state. Our results show that strong coupling between these charge and conformational degrees of freedom leads to new behaviour beyond the established picture of single-electron transport in atomic-scale transistors.



قيم البحث

اقرأ أيضاً

We have used the electromigration technique to fabricate a $rm{C_{{60}}}$ single-molecule transistor (SMT). We present a full experimental study as a function of temperature, down to 35 mK, and as a function of magnetic field up to 8 T in a SMT wit h odd number of electrons, where the usual spin-1/2 Kondo effect occurs, with good agreement with theory. In the case of even number of electrons, a low temperature magneto-transport study is provided, which demonstrates a Zeeman splitting of the zero-bias anomaly at energies well below the Kondo scale.
Using first-principles methods we study theoretically the properties of an individual ${Fe_4}$ single-molecule magnet (SMM) attached to metallic leads in a single-electron transistor geometry. We show that the conductive leads do not affect the spin ordering and magnetic anisotropy of the neutral SMM. On the other hand, the leads have a strong effect on the anisotropy of the charged states of the molecule, which are probed in Coulomb blockade transport. Furthermore, we demonstrate that an external electric potential, modeling a gate electrode, can be used to manipulate the magnetic properties of the system. For a charged molecule, by localizing the extra charge with the gate voltage closer to the magnetic core, the anisotropy magnitude and spin ordering converges to the values found for the isolated ${Fe_4}$ SMM. We compare these findings with the results of recent quantum transport experiments in three-terminal devices.
We monitor the Landau-Zener dynamics of a single-ion magnet in a spin-transistor geometry. For increasing field-sweep rates, the spin reversal probability shows increasing deviations from that of a closed system. In the low-conductance limit, such de viations are shown to result from a dephasing process. In particular, the observed behaviors are succesfully simulated by means of an adiabatic master equation, with time averaged dephasing (Lindblad) operators. The time average is tentatively interpeted in terms of the finite time resolution of the continuous measurement.
The solid-state structures of organic charge transfer (CT) salts are critical in determining their mode of charge transport, and hence their unusual electrical properties, which range from semiconducting through metallic to superconducting. In contra st, using both theory and experiment, we show here that the conductance of metal | single molecule | metal junctions involving aromatic donor moieties (dialkylterthiophene, dialkylbenzene) increase by over an order of magnitude upon formation of charge transfer (CT) complexes with tetracyanoethylene (TCNE). This enhancement occurs because CT complex formation creates a new resonance in the transmission function, close to the metal contact Fermi energy, that is a signal of room-temperature quantum interference.
It is understood that molecular conjugation plays an important role in charge transport through single-molecule junctions. Here, we investigate electron transport through an anthraquinone based single-molecule three-terminal device. With the use of a n electric-field induced by a gate electrode, the molecule is reduced resulting into a ten-fold increase in the off-resonant differential conductance. Theoretical calculations link the change in differential conductance to a reduction-induced change in conjugation, thereby lifting destructive interference of transport pathways.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا