ﻻ يوجد ملخص باللغة العربية
A new concept realizing giant spin Nernst effect in nonmagnetic metallic films is introduced. It is based on the idea of engineering an asymmetric energy dependence of the longitudinal and transverse electrical conductivities, as well as a pronounced energy dependence of the spin Hall angle in the vicinity of the Fermi level by the resonant impurity states at the Fermi level. We employ an analytical model and demonstrate the emergence of a giant spin Nernst effect in Ag(111) films using {it ab-initio} calculations combined with the Boltzmann approach for transport properties arising from skew scattering off impurities.
We show that the extrinsic spin Hall effect can be engineered in monolayer graphene by decoration with small doses of adatoms, molecules, or nanoparticles originating local spin-orbit perturbations. The analysis of the single impurity scattering prob
Nuclear spin polarization induced by hyperfine interaction and the Edelstein effect due to strong spin-orbit interaction is investigated by quantum transport in Bi(111) thin film samples. The Bi(111) films are deposited on mica by van der Waals epita
We predict spin Hall angles up to 80% for ultrathin noble metal films with substitutional Bi impurities. The colossal spin Hall effect is caused by enhancement of the spin Hall conductivity in reduced sample dimension and a strong reduction of the ch
We study the Nernst effect and the spin Nernst effect, that a longitudinal thermal gradient induces a transverse voltage and a spin current. A mesoscopic four-terminal cross-bar device having the Rashba spin-orbit interaction (SOI) under a perpendicu
The observation of the spin Hall effect triggered intense research on pure spin current transport. With the spin Hall effect, the spin Seebeck effect, and the spin Peltier effect already observed, our picture of pure spin current transport is almost