ﻻ يوجد ملخص باللغة العربية
We consider a mixture of one-dimensional strongly interacting Fermi gases up to six components, subjected to a longitudinal harmonic confinement. In the limit of infinitely strong repulsions we provide an exact solution which generalizes the one for the two-component mixture. We show that an imbalanced mixture under harmonic confinement displays partial spatial separation among the components, with a structure which depends on the relative population of the various components. Furthermore, we provide a symmetry characterization of the ground and excited states of the mixture introducing and evaluating a suitable operator, namely the conjugacy class sum. We show that, even under external confinement, the gas has a definite symmetry which corresponds to the most symmetric one compatible with the imbalance among the components. This generalizes the predictions of the Lieb-Mattis theorem for a fermionic mixture with more than two components.
The experimental realization of stable, ultracold Fermi gases near a Feshbach resonance allows to study gases with attractive interactions of essentially arbitrary strength. They extend the classic paradigm of BCS into a regime which has never been a
We analytically determine the properties of three interacting fermions in a harmonic trap subject to an external rotation. Thermodynamic quantities such as the entropy and energy are calculated from the third order quantum virial expansion. By parame
We derive the phonon damping rate due to the four-phonon Landau-Khalatnikov process in low temperature strongly interacting Fermi gases using quantum hydrodynamics, correcting and extending the original calculation of Landau and Khalatnikov [ZhETF, 1
We present an experimental investigation of collective oscillations in harmonically trapped Fermi gases through the crossover from two to three dimensions. Specifically, we measure the frequency of the radial monopole or breathing mode as a function
We consider density-imbalanced Fermi gases of atoms in the strongly interacting, i.e. unitarity, regime. The Bogoliubov-deGennes equations for a trapped superfluid are solved. They take into account the finite size of the system, as well as give rise