ﻻ يوجد ملخص باللغة العربية
Let $Gsubseteq GL(n)$ be a finite group without pseudo-reflections. We present an algorithm to compute and verify a candidate for the Cox ring of a resolution $Xrightarrow mathbb{C}^n/G$, which is based just on the geometry of the singularity $mathbb{C}^n/G$, without further knowledge of its resolutions. We explain the use of our implementation of the algorithms in Singular. As an application, we determine the Cox rings of resolutions $Xrightarrow mathbb{C}^3/G$ for all $Gsubseteq GL(3)$ with the aforementioned property and of order $|G|leq 12$. We also provide examples in dimension 4.
It is known that the underlying spaces of all abelian quotient singularities which are embeddable as complete intersections of hypersurfaces in an affine space can be overall resolved by means of projective torus-equivariant crepant birational morphi
We classify all $n$-dimensional reduced Cohen-Macaulay modular quotient variety $mathbb{A}_mathbb{F}^n/C_{2p}$ and study their singularities, where $p$ is a prime number and $C_{2p}$ denotes the cyclic group of order $2p$. In particular, we present a
Over the past two decades, there has been much progress on the classification of symplectic linear quotient singularities V/G admitting a symplectic (equivalently, crepant) resolution of singularities. The classification is almost complete but there
We introduce the notion of right pre-resolutions (quasi-resolutions) for noncommutative isolated singularities, which is a weaker version of quasi-resolutions introduced by Qin-Wang-Zhang. We prove that right quasi-resolutions for noetherian bounded
We study the hyperplane arrangements associated, via the minimal model programme, to symplectic quotient singularities. We show that this hyperplane arrangement equals the arrangement of CM-hyperplanes coming from the representation theory of restric