ﻻ يوجد ملخص باللغة العربية
We revisit a concept that has been central in some early stages of computer science, that of structured programming: a set of rules that an algorithm must follow in order to acquire a structure that is desirable in many aspects. While much has been written about structured programming, an important issue has been left unanswered: given an arbitrary, compiled program, describe an algorithm to decide whether or not it is structured, that is, whether it conforms to the stated principles of structured programming. We refer to the classical concept of structured programming, as described by Dijkstra. By employing a graph model and graph-theoretic techniques, we formulate an efficient algorithm for answering this question. To do so, we first introduce the class of graphs which correspond to structured programs, which we call Dijkstra Graphs. Our problem then becomes the recognition of such graphs, for which we present a greedy $O(n)$-time algorithm. Furthermore, we describe an isomorphism algorithm for Dijkstra graphs, whose complexity is also linear in the number of vertices of the graph. Both the recognition and isomorphism algorithms have potential important applications, such as in code similarity analysis.
For any class $mathcal{C}$ of bipartite graphs, we define quasi-$cal C$ to be the class of all graphs $G$ such that every bipartition of $G$ belongs to $cal C$. This definition is motivated by a generalisation of the switch Markov chain on perfect ma
Different graph generalizations have been recently used in an ad-hoc manner to represent multilayer networks, i.e. systems formed by distinct layers where each layer can be seen as a network. Similar constructions have also been used to represent tim
A graph is NIC-planar if it admits a drawing in the plane with at most one crossing per edge and such that two pairs of crossing edges share at most one common end vertex. NIC-planarity generalizes IC-planarity, which allows a vertex to be incident t
A graph $G$ is said to be the intersection of graphs $G_1,G_2,ldots,G_k$ if $V(G)=V(G_1)=V(G_2)=cdots=V(G_k)$ and $E(G)=E(G_1)cap E(G_2)capcdotscap E(G_k)$. For a graph $G$, $mathrm{dim}_{COG}(G)$ (resp. $mathrm{dim}_{TH}(G)$) denotes the minimum num
A $k$-frugal colouring of a graph $G$ is a proper colouring of the vertices of $G$ such that no colour appears more than $k$ times in the neighbourhood of a vertex. This type of colouring was introduced by Hind, Molloy and Reed in 1997. In this paper