A Super-Resolution Framework for Tensor Decomposition


الملخص بالإنكليزية

This work considers a super-resolution framework for overcomplete tensor decomposition. Specifically, we view tensor decomposition as a super-resolution problem of recovering a sum of Dirac measures on the sphere and solve it by minimizing a continuous analog of the $ell_1$ norm on the space of measures. The optimal value of this optimization defines the tensor nuclear norm. Similar to the separation condition in the super-resolution problem, by explicitly constructing a dual certificate, we develop incoherence conditions of the tensor factors so that they form the unique optimal solution of the continuous analog of $ell_1$ norm minimization. Remarkably, the derived incoherence conditions are satisfied with high probability by random tensor factors uniformly distributed on the sphere, implying global identifiability of random tensor factors.

تحميل البحث