The Pitman-Yor process is a random discrete measure. The random weights or masses follow the two-parameter Poisson-Dirichlet distribution with parameters $0<alpha<1, theta>-alpha$. The parameters $alpha$ and $theta$ correspond to the stable and gamma components, respectively. The distribution of atoms is given by a probability $ u$. In this article we consider the limit theorems for the Pitman-Yor process and the two-parameter Poisson-Dirichlet distribution. These include law of large numbers, fluctuations, and moderate or large deviation principles. The limiting procedures involve either $alpha$ tends to zero or one. They arise naturally in genetics and physics such as the asymptotic coalescence time for explosive branching process and the approximation to generalized random energy model for disordered system.