ﻻ يوجد ملخص باللغة العربية
Using pointwise semigroup techniques, we establish sharp rates of decay in space and time of a perturbed reaction diffusion front to its time-asymptotic limit. This recovers results of Sattinger, Henry and others of time-exponential convergence in weighted $L^p$ and Sobolev norms, while capturing the new feature of spatial diffusion at Gaussian rate. Novel features of the argument are a point-wise Green function decomposition reconciling spectral decomposition and short-time Nash-Aronson estimates and an instantaneous tracking scheme similar to that used in the study of stability of viscous shock waves.
In this paper, we prove some qualitative properties of pushed fronts for the periodic reaction-diffusion-equation with general monostable nonlinearities. Especially, we prove the exponential behavior of pushed fronts when they are approaching their u
We study the asymptotic speed of traveling fronts of the scalar reaction diffusion for positive reaction terms and with a diffusion coefficient depending nonlinearly on the concentration and on its gradient. We restrict our study to diffusion coeffic
The determination of the speed of travelling fronts of the scalar reaction diffusion equation has been the subject of much study. Using different approaches seemingly disconnected variational principles have been established. The purpose of this work
We analyze the stability of a planar solid-solid interface at which a chemical reaction occurs. Examples include oxidation, nitridation, or silicide formation. Using a continuum model, including a general formula for the stress-dependence of the reac
We study the planar front solution for a class of reaction diffusion equations in multidimensional space in the case when the essential spectrum of the linearization in the direction of the front touches the imaginary axis. At the linear level, the s