ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical uncertainty of the supersymmetric dark matter relic density from scheme and scale variations

84   0   0.0 ( 0 )
 نشر من قبل Michael Klasen
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For particle physics observables at colliders such as the LHC at CERN, it has been common practice for many decades to estimate the theoretical uncertainty by studying the variations of the predicted cross sections with a priori unpredictable scales. In astroparticle physics, this has so far not been possible, since most of the observables were calculated at Born level only, so that the renormalization scheme and scale dependence could not be studied in a meaningful way. In this paper, we present the first quantitative study of the theoretical uncertainty of the neutralino dark matter relic density from scheme and scale variations. We first explain in detail how the renormalization scale enters the tree-level calculations through coupling constants, masses and mixing angles. We then demonstrate a reduction of the renormalization scale dependence through one-loop SUSY-QCD corrections in many different dark matter annihilation channels and enhanced perturbative stability of a mixed on-shell/$bar{rm DR}$ renormalization scheme over a pure $bar{rm DR}$ scheme in the top-quark sector. In the stop-stop annihilation channel, the Sommerfeld enhancement and its scale dependence are shown to be of particular importance. Finally, the impact of our higher-order SUSY-QCD corrections and their scale uncertainties are studied in three typical scenarios of the phenomenological Minimal Supersymmetric Standard Model with eleven parameters (pMSSM-11). We find that the theoretical uncertainty is reduced in many cases and can become comparable to the size of the experimental one in some scenarios.



قيم البحث

اقرأ أيضاً

In this paper, we perform a full next-to-leading order (NLO) QCD calculation of neutralino scattering on protons or neutrons in the MSSM. We match the results of the NLO QCD calculation to the scalar and axial-vector operators in the effective field theory approach. These govern the spin-independent and spin-dependent detection rates, respectively. The calculations have been performed for general bino, wino and higgsino decompositions of neutralino dark matter and required a novel tensor reduction method of loop integrals with vanishing relative velocities and Gram determinants. Numerically, the NLO QCD effects are shown to be of at least of similar size and sometimes larger than the currently estimated nuclear uncertainties. We also demonstrate the interplay of the direct detection rate with the relic density when consistently analyzed with the program $mathtt{DM@NLO}$.
We consider the long-range effect of the Higgs on the density of thermal-relic dark matter. While the electroweak gauge boson and gluon exchange have been previously studied, the Higgs is typically thought to mediate only contact interactions. We sho w that the Sommerfeld enhancement due to a 125 GeV Higgs can deplete TeV-scale dark matter significantly, and describe how the interplay between the Higgs and other mediators influences this effect. We discuss the importance of the Higgs enhancement in the Minimal Supersymmetric Standard Model, and its implications for experiments.
Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, neutralino_1, assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly-degenerate next-to-lightest supersymmetric particle (NLSP) such as the lighter stau (stau_1), stop (stop_1) or chargino (chargino_1), resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2 and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the stau_1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for missing E_T events and long-lived charged particles, whereas their H/A funnel, focus-point and chargino_1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is chargino_1 coannihilation: {parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.
We present models of resonant self-interacting dark matter in a dark sector with QCD, based on analogies to the meson spectra in Standard Model QCD. For dark mesons made of two light quarks, we present a simple model that realizes resonant self-inter action (analogous to the $phi$-K-K system) and thermal freeze-out. We also consider asymmetric dark matter composed of heavy and light dark quarks to realize a resonant self-interaction (analogous to the $Upsilon(4S)$-B-B system) and discuss the experimental probes of both setups. Finally, we comment on the possible resonant self-interactions already built into SIMP and ELDER mechanisms while making use of lattice results to determine feasibility.
We estimate the current theoretical uncertainty in supersymmetric dark matter predictions by comparing several state-of-the-art calculations within the minimal supersymmetric standard model (MSSM). We consider standard neutralino dark matter scenario s -- coannihilation, well-tempering, pseudoscalar resonance -- and benchmark models both in the pMSSM framework and in frameworks with Grand Unified Theory (GUT)-scale unification of supersymmetric mass parameters. The pipelines we consider are constructed from the publicly available software packages SOFTSUSY, SPheno, FeynHiggs, SusyHD, micrOMEGAs, and DarkSUSY. We find that the theoretical uncertainty in the relic density as calculated by different pipelines, in general, far exceeds the statistical errors reported by the Planck collaboration. In GUT models, in particular, the relative discrepancies in the results reported by different pipelines can be as much as a few orders of magnitude. We find that these discrepancies are especially pronounced for for cases where the dark matter physics relies critically on calculations related to electroweak symmetry breaking, which we investigate in detail, and for coannihilation models, where there is heightened sensitivity to the sparticle spectrum. The dark matter annihilation cross section today and the scattering cross section with nuclei also suffer appreciable theoretical uncertainties, which, as experiments reach the relevant sensitivities, could lead to uncertainty in conclusions regarding the viability or exclusion of particular models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا