ﻻ يوجد ملخص باللغة العربية
We investigate the complexity of finding an embedded non-orientable surface of Euler genus $g$ in a triangulated $3$-manifold. This problem occurs both as a natural question in low-dimensional topology, and as a first non-trivial instance of embeddability of complexes into $3$-manifolds. We prove that the problem is NP-hard, thus adding to the relatively few hardness results that are currently known in 3-manifold topology. In addition, we show that the problem lies in NP when the Euler genus g is odd, and we give an explicit algorithm in this case.
A longstanding avenue of research in orientable surface topology is to create and enumerate collections of curves in surfaces with certain intersection properties. We look for similar collections of curves in non-orientable surfaces. A surface is non
We present a practical algorithm to test whether a 3-manifold given by a triangulation or an ideal triangulation contains a closed essential surface. This property has important theoretical and algorithmic consequences. As a testament to its practica
Quandles with involutions that satisfy certain conditions, called good involutions, can be used to color non-orientable surface-knots. We use subgroups of signed permutation matrices to construct non-trivial good involutions on extensions of odd orde
By work of Uhlenbeck, the largest principal curvature of any least area fiber of a hyperbolic $3$-manifold fibering over the circle is bounded below by one. We give a short argument to show that, along certain families of fibered hyperbolic $3$-manif
Motivated by the construction of free quandles and Dehn quandles of orientable surfaces, we introduce Dehn quandles of groups with respect to their subsets. As a characterisation, we prove that Dehn quandles are precisely those quandles which embed n