ترغب بنشر مسار تعليمي؟ اضغط هنا

Diphoton resonances in a U(1)_{B-L} extension of the minimal supesymmetric standard model

144   0   0.0 ( 0 )
 نشر من قبل George Lazarides
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Inspired by the 750 GeV diphoton state recently reported by ATLAS and CMS, we propose a U(1)_{B-L} extension of the MSSM which predicts the existence of four spin zero resonance states that are degenerate in mass in the supersymmetric limit. Vector-like fields, a gauge singlet field, as well as the MSSM Higgsinos are prevented from acquiring arbitrary large masses by a U(1) R-symmetry. Indeed, these masses can be considerably lighter than the Z gauge boson mass. Depending on kinematics the resonance states could decay into right handed neutrinos and sneutrinos, and/or MSSM Higgs fields and Higgsinos with total decay widths in the multi-GeV range.



قيم البحث

اقرأ أيضاً

An additional $U(1)$ gauge interaction is one of promising extensions of the standard model of particle physics. Among others, the $U(1)_{B-L}$ gauge symmetry is particularly interesting because it addresses the origin of Majorana masses of right-han ded neutrinos, which naturally leads to tiny light neutrino masses through the seesaw mechanism. We show that, based on the minimal $U(1)_{B-L}$ model, the symmetry breaking of the extra $U(1)$ gauge symmetry with its minimal Higgs sector in the early Universe can exhibit the first-order phase transition and hence generate a large enough amplitude of stochastic gravitational wave radiation which is detectable in future experiments.
In this work, we discuss two component fermionic FIMP dark matter (DM) in a popular $B-L$ extension of the standard model (SM) with inverse seesaw mechanism. Due to the introduced $mathbb{Z}_{2}$ discrete symmetry, a keV SM gauge singlet fermion is s table and can be a warm DM candidate. Also, this $mathbb{Z}_{2}$ symmetry helps the lightest right-handed neutrino, with mass of order GeV, to be a long-lived or stable particle by choosing a corresponding Yukawa coupling to be very small. Firstly, in the absence of a GeV DM component (i.e., without tuning its corresponding Yukawa coupling), we consider only a keV DM as a single component DM produced by the freeze-in mechanism. Secondly, we study a two component FIMP DM scenario and emphasize that the correct ballpark DM relic density bound can be achieved for a wide parameter space.
We consider minimal $U(1)$ extensions of the Standard Model in which one of the right-handed neutrinos is charged under the new gauge symmetry and plays the role of dark matter. In particular, we perform a detailed phenomenological study for the case of a $U(1)_{(B-L)_3}$ flavoured $B-L$ symmetry. If perturbativity is required up to high-scales, we find an upper bound on the dark matter mass of $m_chilesssim2$ TeV, significantly stronger than that obtained in simplified models. Furthermore, if the $U(1)_{(B-L)_3}$ breaking scalar has significant mixing with the SM Higgs, there are already strong constraints from direct detection. On the other hand, there remains significant viable parameter space in the case of small mixing, which may be probed in the future via LHC $Z^prime$ searches and indirect detection. We also comment on more general anomaly-free symmetries consistent with a TeV-scale RH neutrino dark matter candidate, and show that if two heavy RH neutrinos for leptogenesis are also required, one is naturally led to a single-parameter class of $U(1)$ symmetries.
The existence of the neutrino mass and flavor mixing have been experimentally verified. These phenomena strongly motivate to extend the Standard Model (SM). Amongst many possibilities, a simple and interesting extension of the SM can be investigated using a general U$(1)_X$ extension of the SM gauge group. Demanding the cancellation of the gauge and mixed gauge gravity anomalies, three right handed neutrinos are introduced in this model where the U$(1)_X$ charge assignment becomes a linear combination of U$(1)_{rm{B-L}}$ and U$(1)_Y$ hyper-charges. After the U$(1)_X$ breaking, an additional neutral gauge boson, $Z^prime$ is evolved and the neutrino mass is generated by the seesaw mechanism. In such a model we investigate the properties of a Dark Matter (DM) candidate which is a massive weakly interacting particle and Dirac type in nature. The stability of the DM is protected by its U$(1)_X$ charge. Using the current bounds on the search results of $Z^prime$ at the Large Hadron Collider (LHC) and the dark matter relic abundance we find a phenomenologically viable parameter space of our scenario.
529 - Shaaban Khalil , Osamu Seto 2008
Sterile right-handed neutrinos can be naturally embedded in a low scale gauged $U(1)_{B-L}$ extension of the standard model. We show that, within a low reheating scenario, such a neutrino is an interesting candidate for dark matter. We emphasize that if the neutrino mass is of order of MeV, then it accounts for the measured dark matter relic density and also accommodates the observed flux of 511 keV photons from the galactic bulge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا