ترغب بنشر مسار تعليمي؟ اضغط هنا

Sunspot Numbers from ISOON: A Ten-Year Data Analysis

114   0   0.0 ( 0 )
 نشر من قبل K Balasubramaniam
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Sunspot numbers are important tracers of historical solar activity. They are important in the prediction of oncoming solar maximum, in the design of lifetimes of space assets, and in assessing the extent of solar-radiation impact on the space environment. Sunspot numbers were obtained visually from sunspot drawings. The availability of digital images from the US Air Force Improved Solar Optical Observing Network (ISOON) prototype telescope concurrent to observer-dependent sunspot numbers recorded at the National Solar Observatory (NSO) has provided a basis for comparing sunspot numbers determined from the two methods. We compare sunspot numbers from visual and digital methods observed nearly simultaneously. The advantages of digital imagery are illustrated.



قيم البحث

اقرأ أيضاً

We create a continuous series of daily and monthly hemispheric sunspot numbers (HSNs) from 1874 to 2020, which will be continuously expanded in the future with the HSNs provided by SILSO. Based on the available daily measurements of hemispheric sunsp ot areas from 1874 to 2016 from Greenwich Royal Observatory and NOAA, we derive the relative fractions of the northern and southern activity. These fractions are applied to the international sunspot number (ISN) to derive the HSNs. This method and obtained data are validated against published HSNs for the period 1945--2020. We provide a continuous data series and catalogue of daily, monthly mean, and 13-month smoothed monthly mean HSNs for the time range 1874--2020 that are consistent with the newly calibrated ISN. Validation of the reconstructed HSNs against the direct data available since 1945 reveals a high level of consistency, with a correlation of r=0.94 (0.97) for the daily (monthly) data. The cumulative hemispheric asymmetries for cycles 12-24 give a mean value of 16%, with no obvious pattern in north-south predominance over the cycle evolution. The strongest asymmetry occurs for cycle no. 19, in which the northern hemisphere shows a cumulated predominance of 42%. The phase shift between the peaks of solar activity in the two hemispheres may be up to 28 months, with a mean absolute value of 16.4 months. The phase shifts reveal an overall asymmetry of the northern hemisphere reaching its cycle maximum earlier (in 10 out of 13 cases). Relating the ISN and HSN peak growth rates during the cycle rise phase with the cycle amplitude reveals higher correlations when considering the two hemispheres individually, with r = 0.9. Our findings demonstrate that empirical solar cycle prediction methods can be improved by investigating the solar cycle dynamics in terms of the hemispheric sunspot numbers.
In addition to regular Schwabe cycles (~ 11 years), solar activity also shows longer periods of enhanced or reduced activity. Of these, reconstructions of the Dalton Minimum provide controversial sunspot group numbers and limited sunspot positions, p artially due to limited source record accessibility. We analysed Stephan Prantners sunspot observations from 1804--1844, the values of which had only been known through estimates despite their notable chronological coverage during the Dalton Minimum. We identified his original manuscript in Stiftsarchiv Wilten, near Innsbruck, Austria. We reviewed his biography (1782--1873) and located his observational sites at Wilten and Waidring, which housed the principal telescopes for his early and late observations: a 3.5-inch astronomical telescope and a Reichenbach 4-feet achromatic erecting telescope, respectively. We identified 215 days of datable sunspot observations, which are twice as much data as his estimated data in the existing database (= 115 days). Prantner counted up to 7--9 sunspot groups per day and measured sunspot positions, which show their distributions in both solar hemispheres. These results strikingly emphasise the difference between the Dalton Minimum and the Maunder Minimum as well as the similarity between the Dalton Minimum and the modern solar cycles.
122 - Lijuan Liu , Jiajia Liu , Jun Chen 2021
Aims. We investigate the configuration of a complex flux rope above a {delta} sunspot region in NOAA AR 11515, and its eruptive expansion during a confined M5.3-class flare. Methods. We study the formation of the {delta} sunspot using continuum int ensity images and photospheric vector magnetograms provided by SDO/HMI. We use EUV and UV images provided by SDO/AIA, and hard X-ray emission recorded by RHESSI to investigate the eruptive details. The coronal magnetic field is extrapolated with a non-linear force free field (NLFFF) method, based on which the flux rope is identified by calculating the twist number Tw and squashing factor Q. We search the null point via a modified Powell hybrid method. Results. The collision between two emerging spot groups form the {delta} sunspot. A bald patch (BP) forms at the collision location, above which a complex flux rope is identified. The flux rope has multiple layers, with one compact end and one bifurcated end, having Tw decreasing from the core to the boundary. A null point is located above the flux rope. The eruptive process consists of precursor flaring at a v-shaped coronal structure, rise of the filament, and flaring below the filament, corresponding well with the NLFFF topological structures, including the null point and the flux rope with BP and hyperbolic flux tube (HFT). Two sets of post-flare loops and three flare ribbons support the bifurcation configuration of the flux rope. Conclusions. The precursor reconnection, which occurs at the null point, weakens the overlying confinement to allow the flux rope to rise, fitting the breakout model. The main phase reconnection, which may occur at the BP or HFT, facilitates the flux rope rising. The results suggest that the {delta} spot configuration presents an environment prone to the formation of complex magnetic configurations which will work together to produce activities.
The present study is an attempt to investigate the long term variations in coronal rotation by analyzing the time series of the solar radio emission data at 2.8 GHz frequency for the period 1947 - 2009. Here, daily adjusted radio flux (known as Penti cton flux) data are used. The autocorrelation analysis shows that the rotation period varies between 19.0 to 29.5 sidereal days (mean sidereal rotation period is 24.3 days). This variation in the coronal rotation period shows evidence of two components in the variation; (1) 22-years component which may be related to the solar magnetic field reversal cycle or Hales cycle, and (3) a component which is irregular in nature, but dominates over the other components. The crosscorrelation analysis between the annual average sunspots number and the coronal rotation period also shows evidence of its correlation with the 22-years Hales cycle. The 22-years component is found to be almost in phase with the corresponding periodicities in the variation of the sunspots number.
Sunspot number series are subject to various uncertainties, which are still poorly known. The need for their better understanding was recently highlighted by the major makeover of the international Sunspot Number [Clette et al., Space Science Reviews , 2014]. We present the first thorough estimation of these uncertainties, which behave as Poisson-like random variables with a multiplicative coefficient that is time- and observatory-dependent. We provide a simple expression for these uncertainties, and reveal how their evolution in time coincides with changes in the observations, and processing of the data. Knowing their value is essential for properly building composites out of multiple observations, and for preserving the stability of the composites in time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا