ﻻ يوجد ملخص باللغة العربية
The aim of this paper is the study of thermal vacuum condensate for scalar and fermion fields. We analyze the thermal states at the temperature of the cosmic microwave background (CMB) and we show that the vacuum expectation value of the energy momentum tensor density of photon fields reproduces the energy density and pressure of the CMB. We perform the computations in the formal framework of the thermo field dynamics. We also consider the case of neutrinos and thermal states at the temperature of the neutrino cosmic background. Consistency with the estimated lower bound of the sum of the active neutrino masses is verified. In the boson sector, non trivial contribution to the energy of the universe is given by particles of masses of the order of $10^{-4}eV$ compatible with the ones of the axion-like particles. The fractal self-similar structure of the thermal radiation is also discussed and related to the coherent structure of the thermal vacuum.
This thesis is devoted to the development of a nonperturbative quantum field theoretical approach to flavour physics, with special attention to cosmological applications. Neutrino flavour oscillation is nowadays a fairly well-established experimental
Alternative cosmologies, based on extensions of General Relativity, predict modified thermal histories in the Early Universe during the pre Big Bang Nucleosynthesis (BBN) era, epoch which is not directly constrained by cosmological observations. When
The Workshop on results of the Project Kosmomikrofizyka-2 (Astroparticle Physics) of the National Academy of Sciences (NAS) of Ukraine Astrophysical and cosmological problems of invisible mass and dark energy in the Universe was held on November 21-2
We investigate cosmological constraints on an energy density contribution of elastic dark matter self-interactions characterized by the mass of the exchange particle and coupling constant. Because of the expansion behaviour in a Robertson-Walker metr