ﻻ يوجد ملخص باللغة العربية
We study the discrete spectrum of the Robin Laplacian $Q^{Omega}_alpha$ in $L^2(Omega)$, [ umapsto -Delta u, quad dfrac{partial u}{partial n}=alpha u text{ on }partialOmega, ] where $Omegasubset mathbb{R}^{3}$ is a conical domain with a regular cross-section $Thetasubset mathbb{S}^2$, $n$ is the outer unit normal, and $alpha>0$ is a fixed constant. It is known from previous papers that the bottom of the essential spectrum of $Q^{Omega}_alpha$ is $-alpha^2$ and that the finiteness of the discrete spectrum depends on the geometry of the cross-section. We show that the accumulation of the discrete spectrum of $Q^Omega_alpha$ is determined by the discrete spectrum of an effective Hamiltonian defined on the boundary and far from the origin. By studying this model operator, we prove that the number of eigenvalues of $Q^{Omega}_alpha$ in $(-infty,-alpha^2-lambda)$, with $lambda>0$, behaves for $lambdato0$ as [ dfrac{alpha^2}{8pi lambda} int_{partialTheta} kappa_+(s)^2d s +oleft(frac{1}{lambda}right), ] where $kappa_+$ is the positive part of the geodesic curvature of the cross-section boundary.
We discuss several geometric conditions guaranteeing the finiteness or the infiniteness of the discrete spectrum for Robin Laplacians on conical domains.
Let $Omega$ be a curvilinear polygon and $Q^gamma_{Omega}$ be the Laplacian in $L^2(Omega)$, $Q^gamma_{Omega}psi=-Delta psi$, with the Robin boundary condition $partial_ u psi=gamma psi$, where $partial_ u$ is the outer normal derivative and $gamma>0
We consider the problem of geometric optimization of the lowest eigenvalue for the Laplacian on a compact, simply-connected two-dimensional manifold with boundary subject to an attractive Robin boundary condition. We prove that in the sub-class of ma
For $alphain(0,pi)$, let $U_alpha$ denote the infinite planar sector of opening $2alpha$, [ U_alpha=big{ (x_1,x_2)inmathbb R^2: big|arg(x_1+ix_2) big|<alpha big}, ] and $T^gamma_alpha$ be the Laplacian in $L^2(U_alpha)$, $T^gamma_alpha u= -Delta u$,
We prove various estimates for the first eigenvalue of the magnetic Dirichlet Laplacian on a bounded domain in two dimensions. When the magnetic field is constant, we give lower and upper bounds in terms of geometric quantities of the domain. We furt