Star formation in 3CR radio galaxies and quasars at z < 1


الملخص بالإنكليزية

Using the Herschel Space Observatory we have observed a representative sample of 87 powerful 3CR sources at redshift z < 1. The far-infrared (FIR, 70-500 micron) photometry is combined with mid-infrared (MIR) photometry from the Wide-Field Infrared Survey Explorer (WISE) and catalogued data to analyse the complete spectral energy distributions (SEDs) of each object from optical to radio wavelength. To disentangle the contributions of different components, the SEDs are fitted with a set of templates to derive the luminosities of host galaxy starlight, dust torus emission powered by active galactic nuclei (AGN) and cool dust heated by stars. The level of emission from relativistic jets is also estimated, in order to isolate the thermal host galaxy contribution. The new data are in line with the orientation-based unification of high-excitation radio-loud AGN, in that the dust torus becomes optically thin longwards of 30 micron. The low excitation radio galaxies and the MIR weak sources represent MIR- and FIR-faint AGN population different from the high-excitation MIR-bright objects; it remains an open question whether they are at a later evolutionary state or an intrinsically different population. The derived luminosities for host starlight and dust heated by star formation are converted to stellar masses and star formation rates (SFR). The host-normalized SFR of the bulk of the 3CR sources is low when compared to other galaxy populations at the same epoch. Estimates of the dust mass yield a 1--100 times lower dust/stellar mass ratio than for the Milky Way, indicating that these 3CR hosts have very low levels of interstellar matter explaining the low level of star formation. Less than 10% of the 3CR sources show levels of star formation above those of the main sequence of star forming galaxies.

تحميل البحث