ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of further-neighbor interactions in modulating the critical behavior of the Ising model with frustration

160   0   0.0 ( 0 )
 نشر من قبل Minghui Qin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. M. Liu




اسأل ChatGPT حول البحث

In this work, we investigate the phase transitions and critical behaviors of the frustrated J1-J2-J3 Ising model on the square lattice using Monte Carlo simulations, and particular attention goes to the effect of the second next nearest neighbor interaction J3 on the phase transition from a disordered state to the single stripe antiferromagnetic state. A continuous Ashkin-Teller-like transition behavior in a certain range of J3 is identified, while the 4-state Potts-critical end point [J3/J1]C is estimated based on the analytic method reported in earlier work [Jin et al., Phys. Rev. Lett. 108, 045702 (2012)]. It is suggested that the interaction J3 can tune the transition temperature and in turn modulate the critical behaviors of the frustrated model. Furthermore, it is revealed that an antiferromagnetic J3 can stabilize the staggered dimer state via a phase transition of strong first-order character.



قيم البحث

اقرأ أيضاً

313 - Marco Picco 2012
We present results of a Monte Carlo study for the ferromagnetic Ising model with long range interactions in two dimensions. This model has been simulated for a large range of interaction parameter $sigma$ and for large sizes. We observe that the resu lts close to the change of regime from intermediate to short range do not agree with the renormalization group predictions.
144 - Junqi Yin , D. P. Landau 2009
Using the parallel tempering algorithm and GPU accelerated techniques, we have performed large-scale Monte Carlo simulations of the Ising model on a square lattice with antiferromagnetic (repulsive) nearest-neighbor(NN) and next-nearest-neighbor(NNN) interactions of the same strength and subject to a uniform magnetic field. Both transitions from the (2x1) and row-shifted (2x2) ordered phases to the paramagnetic phase are continuous. From our data analysis, reentrance behavior of the (2x1) critical line and a bicritical point which separates the two ordered phases at T=0 are confirmed. Based on the critical exponents we obtained along the phase boundary, Suzukis weak universality seems to hold.
The dynamics of the one-dimensional random transverse Ising model with both nearest-neighbor (NN) and next-nearest-neighbor (NNN) interactions is studied in the high-temperature limit by the method of recurrence relations. Both the time-dependent tra nsverse correlation function and the corresponding spectral density are calculated for two typical disordered states. We find that for the bimodal disorder the dynamics of the system undergoes a crossover from a collective-mode behavior to a central-peak one and for the Gaussian disorder the dynamics is complex. For both cases, it is found that the central-peak behavior becomes more obvious and the collective-mode behavior becomes weaker as $K_{i}$ increase, especially when $K_{i}>J_{i}/2$ ($J_{i}$ and $K_{i}$ are exchange couplings of the NN and NNN interactions, respectively). However, the effects are small when the NNN interactions are weak ($K_{i}<J_{i}/2$).
We investigated the Ising model on a square lattice with ferro and antiferromagnetic interactions modulated by the quasiperiodic Octonacci sequence in both directions of the lattice. We have applied the Replica Exchange Monte Carlo (Parallel Temperin g) technique to calculate the thermodynamic quantities of the system. We obtained the order parameter, the associated magnetic susceptibility ($chi$) and the specific heat $(c)$ in order to characterize the universality class of the phase transition. Also, we use the finite size scaling method to obtain the critical temperature of the system and the critical exponents $beta$, $gamma$ and $ u$. In the low temperature limit we have obtained a continuous transition with critical temperature around $T_{c} approx 1.413$. The system obeys the Ising universality class with logarithmic corrections. We found estimatives for the correction exponents $hat{beta}$, $hat{gamma}$ and $hat{lambda}$ by using the finite size scaling technique.
139 - R.T. Scalettar 2004
Statistical mechanical models with local interactions in $d>1$ dimension can be regarded as $d=1$ dimensional models with regular long range interactions. In this paper we study the critical properties of Ising models having $V$ sites, each having $z $ randomly chosen neighbors. For $z=2$ the model reduces to the $d=1$ Ising model. For $z= infty$ we get a mean field model. We find that for finite $z > 2$ the system has a second order phase transition characterized by a length scale $L={rm ln}V$ and mean field critical exponents that are independent of $z$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا