We investigate analytically the properties of the Weyl holographic superconductor in the Lifshitz black hole background. We find that the critical temperature of the Weyl superconductor decreases with increasing Lifshitz dynamical exponent, $z$, indicating that condensation becomes difficult. In addition, it is found that the critical temperature and condensation operator could be affected by applying the Weyl coupling, $gamma$. Moreover, we compute the critical magnetic field and investigate its dependence on the parameters $gamma$ and $z$. Finally, we show numerically that the Weyl coupling parameter $gamma$ and the Lifshitz dynamical exponent $z$ together control the size and strength of the conductivity peak and the ratio of gap frequency over critical temperature $omega_{g}/T_{c}$.