Extended canonical Monte Carlo methods: Improving accuracy of microcanonical calculations using a re-weighting technique


الملخص بالإنكليزية

Velazquez and Curilef have proposed a methodology to extend Monte Carlo algorithms that are based on canonical ensemble. According to our previous study, their proposal allows us to overcome slow sampling problems in systems that undergo any type of temperature-driven phase transition. After a comprehensive review about ideas and connections of this framework, we discuss the application a re-weighting technique to improve the accuracy of microcanonical calculations, specifically, the well-known multi-histograms method of Ferrenberg and Swendsen. As example of application, we reconsider the study of four-state Potts model on the square lattice $Ltimes L$ with periodic boundary conditions. This analysis allows us to detect the existence of a very small latent heat per site $q_{L}$ during the occurrence of temperature-driven phase transition of this model, whose size dependence seems to follow a power-law $q_{L}(L)propto(1/L)^{z}$ with exponent $zsimeq0$.$26pm0$.$02$. It is discussed the compatibility of these results with the continuous character of temperature-driven phase transition when $Lrightarrow+infty$.

تحميل البحث