ترغب بنشر مسار تعليمي؟ اضغط هنا

The Milky Way Project and ATLASGAL: The distribution and physical properties of cold clumps near infrared bubbles

244   0   0.0 ( 0 )
 نشر من قبل Sarah Kendrew
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Kendrew




اسأل ChatGPT حول البحث

We present a statistical study of the distribution and physical properties of cold dense material in and around the inner Galactic Plane near infrared bubbles as catalogued by the Milky Way Project citizen scientists. Using data from the ATLASGAL 870 um survey, we show that 48 +/- 2% of all cold clumps in the studied survey region (|l| <= 65 degrees, |b| <= 1 degree) are found in close proximity to a bubble, and 25 +/- 2% appear directly projected towards a bubble rim. A two-point correlation analysis confirms the strong correlation of massive cold clumps with expanding bubbles. It shows an overdensity of clumps along bubble rims that grows with increasing bubble size, which shows how interstellar medium material is reordered on large scales by bubble expansion around regions of massive star formation. The highest column density clumps appear resistent to the expansion, remaining overdense towards the bubbles interior rather than being swept up by the expanding edge. Spectroscopic observations in ammonia show that cold dust clumps near bubbles appear to be denser, hotter and more turbulent than those in the field, offering circumstantial evidence that bubble-associated clumps are more likely to be forming stars. These observed differences in physical conditions persist for beyond the region of the bubble rims.



قيم البحث

اقرأ أيضاً

Citizen science has helped astronomers comb through large data sets to identify patterns and objects that are not easily found through automated processes. The Milky Way Project (MWP), a citizen science initiative on the Zooniverse platform, presents internet users with infrared (IR) images from Spitzer Space Telescope Galactic plane surveys. MWP volunteers make classification drawings on the images to identify targeted classes of astronomical objects. We present the MWP second data release (DR2) and an updated data reduction pipeline written in Python. We aggregate ${sim}3$ million classifications made by MWP volunteers during the years 2012-2017 to produce the DR2 catalogue, which contains 2600 IR bubbles and 599 candidate bow-shock driving stars. The reliability of bubble identifications, as assessed by comparison to visual identifications by trained experts and scoring by a machine-learning algorithm, is found to be a significant improvement over DR1. We assess the reliability of IR bow shocks via comparison to expert identifications and the colours of candidate bow-shock driving stars in the 2MASS point-source catalogue. We hence identify highly-reliable subsets of 1394 DR2 bubbles and 453 bow-shock driving stars. Uncertainties on object coordinates and bubble size/shape parameters are included in the DR2 catalog. Compared with DR1, the DR2 bubbles catalogue provides more accurate shapes and sizes. The DR2 catalogue identifies 311 new bow shock driving star candidates, including three associated with the giant HII regions NGC 3603 and RCW 49.
The Milky Way Project citizen science initiative recently increased the number of known infrared bubbles in the inner Galactic plane by an order of magnitude compared to previous studies. We present a detailed statistical analysis of this dataset wit h the Red MSX Source catalog of massive young stellar sources to investigate the association of these bubbles with massive star formation. We particularly address the question of massive triggered star formation near infrared bubbles. We find a strong positional correlation of massive young stellar objects (MYSOs) and H II regions with Milky Way Project bubbles at separations of < 2 bubble radii. As bubble sizes increase, a statistically significant overdensity of massive young sources emerges in the region of the bubble rims, possibly indicating the occurrence of triggered star formation. Based on numbers of bubble-associated RMS sources we find that 67+/-3% of MYSOs and (ultra)compact H II regions appear associated with a bubble. We estimate that approximately 22+/-2% of massive young stars may have formed as a result of feedback from expanding H II regions. Using MYSO-bubble correlations, we serendipitously recovered the location of the recently discovered massive cluster Mercer 81, suggesting the potential of such analyses for discovery of heavily extincted distant clusters.
115 - Sona Ehlerova , Jan Palous 2015
HI shells, which may be formed by the activity of young and massive stars, or connected to energy released by interactions of high-velocity clouds with the galactic disk, may be partly responsible both for the destruction of CO clouds and for the cre ation of others. It is not known which effect prevails. We study the relation between HI shells and CO in the outer parts of the Milky Way, using HI and CO surveys and a catalogue of previously identified HI shells. For each individual location, the distance to the nearest HI shell is calculated and it is specified whether it lies in the interior of an HI shell, in its walls, or outside an HI shell. The method takes into account irregular shapes of HI shells. We find a lack of CO clouds in the interiors of HI shells and their increased occurrence in walls. Properties of clouds differ for different environments: interiors of HI shells, their walls, and unperturbed medium. CO clouds found in the interiors of HI shells are those that survived and were robbed of their more diffuse gas. Walls of HI shells have a high molecular content, indicative of an increased rate of CO formation. Comparing the CO fractions within HI shells and outside in the unperturbed medium, we conclude that HI shells are responsible for approx. 20 % increase in the total amount of CO in the outer Milky Way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا