ﻻ يوجد ملخص باللغة العربية
We present a statistical study of the distribution and physical properties of cold dense material in and around the inner Galactic Plane near infrared bubbles as catalogued by the Milky Way Project citizen scientists. Using data from the ATLASGAL 870 um survey, we show that 48 +/- 2% of all cold clumps in the studied survey region (|l| <= 65 degrees, |b| <= 1 degree) are found in close proximity to a bubble, and 25 +/- 2% appear directly projected towards a bubble rim. A two-point correlation analysis confirms the strong correlation of massive cold clumps with expanding bubbles. It shows an overdensity of clumps along bubble rims that grows with increasing bubble size, which shows how interstellar medium material is reordered on large scales by bubble expansion around regions of massive star formation. The highest column density clumps appear resistent to the expansion, remaining overdense towards the bubbles interior rather than being swept up by the expanding edge. Spectroscopic observations in ammonia show that cold dust clumps near bubbles appear to be denser, hotter and more turbulent than those in the field, offering circumstantial evidence that bubble-associated clumps are more likely to be forming stars. These observed differences in physical conditions persist for beyond the region of the bubble rims.
Citizen science has helped astronomers comb through large data sets to identify patterns and objects that are not easily found through automated processes. The Milky Way Project (MWP), a citizen science initiative on the Zooniverse platform, presents
The Milky Way Project citizen science initiative recently increased the number of known infrared bubbles in the inner Galactic plane by an order of magnitude compared to previous studies. We present a detailed statistical analysis of this dataset wit
HI shells, which may be formed by the activity of young and massive stars, or connected to energy released by interactions of high-velocity clouds with the galactic disk, may be partly responsible both for the destruction of CO clouds and for the cre