ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio Sources in the NCP Region Observed with the 21 Centimeter Array

66   0   0.0 ( 0 )
 نشر من قبل Qian Zheng
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a catalog of 624 radio sources detected around the North Celestial Pole (NCP) with the 21 Centimeter Array (21CMA), a radio interferometer dedicated to the statistical measurement of the epoch of reionization (EoR). The data are taken from a 12 h observation made on 2013 April 13, with a frequency coverage from 75 to 175 MHz and an angular resolution of ~ 4 arcmin. The catalog includes flux densities at eight sub-bands across the 21CMA bandwidth and provides the in-band spectral indices for the detected sources. To reduce the complexity of interferometric imaging from the so-called w term and ionospheric effects, the present analysis are restricted to the east-west baselines within 1500 m only. The 624 radio sources are found within 5 degrees around the NCP down to ~ 0.1 Jy. Our source counts are compared, and also exhibit a good agreement, with deep low-frequency observations made recently with the GMRT and MWA. In particular, for fainter radio sources below ~ 1 Jy, we find a flattening trend of source counts towards lower frequencies. While the thermal noise (~0.4 mJy) is well controlled to below the confusion limit, the dynamical range (~10^4) and sensitivity of current 21CMA imaging is largely limited by calibration and deconvolution errors, especially the grating lobes of very bright sources, such as 3C061.1, in the NCP field which result from the regular spacings of the 21CMA. We note that particular attention should be paid to the extended sources, and their modeling and removals may constitute a large technical challenge for current EoR experiments. Our analysis may serve as a useful guide to design of next generation low-frequency interferometers like the Square Kilometre Array.



قيم البحث

اقرأ أيضاً

Detection and mitigation of radio frequency interference (RFI) is the first and also the key step for data processing in radio observations, especially for ongoing low frequency radio experiments towards the detection of the cosmic dawn and epoch of reionization (EoR). In this paper we demonstrate the technique and efficiency of RFI identification and mitigation for the 21 Centimeter Array (21CMA), a radio interferometer dedicated to the statistical measurement of EoR. For terrestrial, man-made RFI, we concentrate mainly on a statistical approach by identifying and then excising non-Gaussian signatures, in the sense that the extremely weak cosmic signal is actually buried under thermal and therefore Gaussian noise. We also introduce the so-called visibility correlation coefficient instead of conventional visibility, which allows a further suppression of rapidly time-varying RFI. Finally, we briefly discuss removals of the sky RFI, the leakage of sidelobes from off-field strong radio sources with time-invariant power and a featureless spectrum. It turns out that state of the art technique should allow us to detect and mitigate RFI to a satisfactory level in present low frequency interferometer observations such as those acquired with the 21CMA, and the accuracy and efficiency can be greatly improved with the employment of low-cost, high-speed computing facilities for data acquisition and processing.
We describe the parameters of a low-frequency all-sky survey of compact radio sources using Interplanetary Scintillation (IPS), undertaken with the Murchison Widefield Array (MWA). While this survey gives important complementary information to low-re solution survey such as the MWA GLEAM survey, providing information on the subarsecond structure of every source, a survey of this kind has not been attempted in the era of low-frequency imaging arrays such as the MWA and LOFAR. Here we set out the capabilities of such a survey, describing the limitations imposed by the heliocentric observing geometry and by the instrument itself. We demonstrate the potential for IPS measurements at any point on the celestial sphere and we show that at 160MHz, reasonable results can be obtained within 30deg of the ecliptic (2{pi} str: half the sky). We also suggest some observational strategies and describe the first such survey, the MWA Phase I IPS survey. Finally we analyse the potential of the recently-upgraded MWA and discuss the potential of the SKA-low to use IPS to probe sub-mJy flux density levels at sub-arcsecond angular resolution.
Magnetic field is ubiquitous in the Universe and it plays essential roles in various astrophysical phenomena, yet its real origin and evolution are poorly known. This article reviews current understanding of magnetic fields in the interstellar medium , the Milky Way Galaxy, external galaxies, active galactic nuclei, clusters of galaxies, and the cosmic web. Particularly, the review concentrates on the achievements that have been provided by centimeter and meter wavelength radio observations. The article also introduces various methods to analyze linear polarization data, including synchrotron radiation, Faraday rotation, depolarization, and Faraday tomography.
124 - Citlali Neria , Yolanda Gomez , 2010
Using the Very Large Array (VLA) at 3.6~cm we identify four new compact radio sources in the vicinity of the cometary HII region G78.4+2.6 (VLA~1). The four compact radio sources (named VLA~2 to VLA~5), have near-infrared counterparts, as seen in the 3.6 $mu$m Spitzer image. One of them (VLA~5) clearly shows evidence of radio variability in a timescale of hours. We explore the possibility that these radio sources are associated with pre-main sequence (PMS) stars in the vicinity of the UC HII region G78.4+2.6. Our results favor the smaller distance value of 1.7 kpc for G78.4+2.6. In addition to the detection of the radio sources in the vicinity of G78.4+2.6, we detected another group of five sources which appear located about 3 to the northwest of the HII region. Some of them exhibit extended emission.
153 - S. Riggi , G. Umana , C. Trigilio 2021
We present observations of a region of the Galactic plane taken during the Early Science Program of the Australian Square Kilometre Array Pathfinder (ASKAP). In this context, we observed the SCORPIO field at 912 MHz with an uncompleted array consisti ng of 15 commissioned antennas. The resulting map covers a square region of ~40 deg^2, centred on (l, b)=(343.5{deg}, 0.75{deg}), with a synthesized beam of 24x21 and a background rms noise of 150-200 {mu}Jy/beam, increasing to 500-600 {mu}Jy/beam close to the Galactic plane. A total of 3963 radio sources were detected and characterized in the field using the CAESAR source finder. We obtained differential source counts in agreement with previously published data after correction for source extraction and characterization uncertainties, estimated from simulated data. The ASKAP positional and flux density scale accuracy were also investigated through comparison with previous surveys (MGPS, NVSS) and additional observations of the SCORPIO field, carried out with ATCA at 2.1 GHz and 10 spatial resolution. These allowed us to obtain a measurement of the spectral index for a subset of the catalogued sources and an estimated fraction of (at least) 8% of resolved sources in the reported catalogue. We cross-matched our catalogued sources with different astronomical databases to search for possible counterparts, finding ~150 associations to known Galactic objects. Finally, we explored a multiparametric approach for classifying previously unreported Galactic sources based on their radio-infrared colors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا