ﻻ يوجد ملخص باللغة العربية
We study a semidefinite programming (SDP) relaxation of the maximum likelihood estimation for exactly recovering a hidden community of cardinality $K$ from an $n times n$ symmetric data matrix $A$, where for distinct indices $i,j$, $A_{ij} sim P$ if $i, j$ are both in the community and $A_{ij} sim Q$ otherwise, for two known probability distributions $P$ and $Q$. We identify a sufficient condition and a necessary condition for the success of SDP for the general model. For both the Bernoulli case ($P={{rm Bern}}(p)$ and $Q={{rm Bern}}(q)$ with $p>q$) and the Gaussian case ($P=mathcal{N}(mu,1)$ and $Q=mathcal{N}(0,1)$ with $mu>0$), which correspond to the problem of planted dense subgraph recovery and submatrix localization respectively, the general results lead to the following findings: (1) If $K=omega( n /log n)$, SDP attains the information-theoretic recovery limits with sharp constants; (2) If $K=Theta(n/log n)$, SDP is order-wise optimal, but strictly suboptimal by a constant factor; (3) If $K=o(n/log n)$ and $K to infty$, SDP is order-wise suboptimal. The same critical scaling for $K$ is found to hold, up to constant factors, for the performance of SDP on the stochastic block model of $n$ vertices partitioned into multiple communities of equal size $K$. A key ingredient in the proof of the necessary condition is a construction of a primal feasible solution based on random perturbation of the true cluster matrix.
We study the problem of recovering a hidden community of cardinality $K$ from an $n times n$ symmetric data matrix $A$, where for distinct indices $i,j$, $A_{ij} sim P$ if $i, j$ both belong to the community and $A_{ij} sim Q$ otherwise, for two know
Resolving a conjecture of Abbe, Bandeira and Hall, the authors have recently shown that the semidefinite programming (SDP) relaxation of the maximum likelihood estimator achieves the sharp threshold for exactly recovering the community structure unde
In the presence of heterogeneous data, where randomly rotated objects fall into multiple underlying categories, it is challenging to simultaneously classify them into clusters and synchronize them based on pairwise relations. This gives rise to the j
In this paper, we study the information theoretic bounds for exact recovery in sub-hypergraph models for community detection. We define a general model called the $m-$uniform sub-hypergraph stochastic block model ($m-$ShSBM). Under the $m-$ShSBM, we
Community detection is considered for a stochastic block model graph of n vertices, with K vertices in the planted community, edge probability p for pairs of vertices both in the community, and edge probability q for other pairs of vertices. The ma