ﻻ يوجد ملخص باللغة العربية
In this work, we model abstractive text summarization using Attentional Encoder-Decoder Recurrent Neural Networks, and show that they achieve state-of-the-art performance on two different corpora. We propose several novel models that address critical problems in summarization that are not adequately modeled by the basic architecture, such as modeling key-words, capturing the hierarchy of sentence-to-word structure, and emitting words that are rare or unseen at training time. Our work shows that many of our proposed models contribute to further improvement in performance. We also propose a new dataset consisting of multi-sentence summaries, and establish performance benchmarks for further research.
Pre-trained sequence-to-sequence (seq-to-seq) models have significantly improved the accuracy of several language generation tasks, including abstractive summarization. Although the fluency of abstractive summarization has been greatly improved by fi
Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feat
Neural sequence-to-sequence models are currently the dominant approach in several natural language processing tasks, but require large parallel corpora. We present a sequence-to-sequence-to-sequence autoencoder (SEQ^3), consisting of two chained enco
This article briefly explains our submitted approach to the DocEng19 competition on extractive summarization. We implemented a recurrent neural network based model that learns to classify whether an articles sentence belongs to the corresponding extr
Pre-trained neural abstractive summarization systems have dominated extractive strategies on news summarization performance, at least in terms of ROUGE. However, system-generated abstractive summaries often face the pitfall of factual inconsistency: