ﻻ يوجد ملخص باللغة العربية
We present a multi-epoch X-ray spectral analysis of the Seyfert 1 galaxy Fairall 9. Our analysis shows that Fairall 9 displays unique spectral variability in that its ratio residuals to a simple absorbed power law in the 0.5-10 keV band remain constant with time in spite of large variations in flux. This behavior implies an unchanging source geometry and the same emission processes continuously at work at the timescale probed. With the constraints from NuSTAR on the broad-band spectral shape, it is clear that the soft excess in this source is a superposition of two different processes, one being blurred ionized reflection in the innermost parts of the accretion disk, and the other a continuum component such as spatially distinct Comptonizing region. Alternatively, a more complex primary Comptonization component together with blurred ionized reflection could be responsible.
Context. X-ray spectral variability analyses of active galactic nuclei (AGN) with moderate luminosities and redshifts typically show a softer when brighter behaviour. Such a trend has rarely been investigated for high-luminosity AGNs ($ L_{bol}gtrsim
The variability of the X-ray spectra of active galactic nuclei (AGN) usually includes a change of the spectral slope. This has been investigated for a small sample of local AGNs by Sobolewska and Papadakis, who found that slope variations are well co
[Abridged] We investigated the X-ray characteristics of the Class I YSO Elias 29 with joint XMM-Newton and NuSTAR observations of 300 ks and 450 ks, respectively. These are the first observations of a very young (<1 Myr) stellar object in a band enco
We present results from the major coordinated X-ray observing program on the ULX NGC 1313 X-1 performed in 2017, combining $XMM$-$Newton$, $Chandra$ and $NuSTAR$, focusing on the evolution of the broadband ($sim$0.3-30.0 keV) continuum emission. Clea
MCG-6-30-15, at a distance of 37 Mpc (z=0.008), is the archetypical Seyfert 1 galaxy showing very broad Fe K$alpha$ emission. We present results from a joint NuSTAR and XMM-Newton observational campaign that, for the first time, allows a sensitive, t