ترغب بنشر مسار تعليمي؟ اضغط هنا

N-Type Oxide Thermoelectrics Via Visual Search Strategies

127   0   0.0 ( 0 )
 نشر من قبل David Singh
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss and present search strategies for finding new thermoelectric compositions based on first principles electronic structure and transport calculations. We illustrate them by application to a search for potential n-type oxide thermoelectric materials. This includes a screen based on visualization of electronic energy isosurfaces. We report compounds that show potential as thermoelectric materials along with detailed properties, including SrTiO3, which is a known thermoelectric, and appropriately doped KNbO3 and rutile TiO2.



قيم البحث

اقرأ أيضاً

The recent discovery of n-type Mg$_3$Sb$_2$ thermoelectric has ignited intensive research activities on searching for potential n-type dopants for this material. Using first-principles defect calculations, here we conduct a systematic computational s creening of potential efficient n-type lanthanide dopants for Mg$_3$Sb$_2$. In addition to La, Ce, Pr, and Tm, we find that high electron concentration ($geq$ 10$^{20}$ cm$^{-3}$ at the growth temperature of 900 K) can be achieved by doping on the Mg sites with Nd, Gd, Ho, and Lu, which are generally more efficient than other lanthanide dopants and the anion-site dopant Te. Experimentally, we confirm Nd and Tm as effective n-type dopants for Mg$_3$Sb$_2$ since doping with Nd and Tm shows superior thermoelectric figure of merit zT $geq$ 1.3 with higher electron concentration than doping with Te. Through codoping with Nd (Tm) and Te, simultaneous power factor improvement and thermal conductivity reduction are achieved. As a result, we obtain high zT values of about 1.65 and 1.75 at 775 K in n-type Mg$_{3.5}$Nd$_{0.04}$Sb$_{1.97}$Te$_{0.03}$ and Mg$_{3.5}$Tm$_{0.03}$Sb$_{1.97}$Te$_{0.03}$, respectively, which are among the highest values for n-type Mg$_3$Sb$_2$ without alloying with Mg$_3$Bi$_2$. This work sheds light on exploring promising n-type dopants for the design of Mg$_3$Sb$_2$ thermoelectrics.
By combining first-principles simulations including an on-site Coulomb repulsion term and Boltzmann theory, we demonstrate how the interplay of quantum confinement and epitaxial strain allows to selectively design $n$- and $p$-type thermoelectric res ponse in (LaNiO$_3$)$_3$/(LaAlO$_3$)$_1(001)$ superlattices. In particular, varying strain from $-4.9$ to $+2.9%$ tunes the Ni orbital polarization at the interfaces from $-6$ to $+3%$. This is caused by an electron redistribution among Ni $3d_{x^2-y^2}$- and $3d_{z^2}$-derived quantum well states which respond differently to strain. Owing to this charge transfer, the position of emerging cross-plane transport resonances can be tuned relative to the Fermi energy. Already for moderate values of $1.5$ and $2.8%$ compressive strain, the cross-plane Seebeck coefficient reaches $sim -60$ and $+100$ $mu$V/K around room temperature, respectively. This provides a novel mechanism to tailor thermoelectric materials.
156 - Kui Jin , Wei Hu , Beiyi Zhu 2015
Since the discovery of n-type copper oxide superconductors, the evolution of electron- and hole-bands and its relation to the superconductivity have been seen as a key factor in unveiling the mechanism of high-Tc superconductors. So far, the occurren ce of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2-xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of -2 V to +2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation between electrons and holes is commonly expected. Our findings paint the picture where Coulomb repulsion plays an important role in the evolution of the electronic states in n-type cuprate superconductors.
87 - Seong-Gon Kim , I.I. Mazin , 1997
We report first principles LDA calculations of the electronic structure and thermoelectric properties of $beta $-Zn$_{4}$Sb$_{3}$. The material is found to be a low carrier density metal with a complex Fermi surface topology and non-trivial dependenc e of Hall concentration on band filling. The band structure is rather covalent, consistent with experimental observations of good carrier mobility. Calculations of the variation with band filling are used to extract the doping level (band filling) from the experimental Hall number. At this band filling, which actually corresponds to 0.1 electrons per 22 atom unit cell, the calculated thermopower and its temperature dependence are in good agreement with experiment. The high Seebeck coefficient in a metallic material is remarkable, and arises in part from the strong energy dependence of the Fermiology near the experimental band filling. Improved thermoelectric performance is predicted for lower doping levels which corresponds to higher Zn concentrations.
103 - Junsoo Park , Max Dylla , Yi Xia 2020
Band convergence is considered a clear benefit to thermoelectric performance because it increases the charge carrier concentration for a given Fermi level, which typically enhances charge conductivity while preserving the Seebeck coefficient. However , this advantage hinges on the assumption that interband scattering of carriers is weak or insignificant. With first-principles treatment of electron-phonon scattering in CaMg$_{2}$Sb$_{2}$-CaZn$_{2}$Sb$_{2}$ Zintl system and full Heusler Sr$_{2}$SbAu, we demonstrate that the benefit of band convergence can be intrinsically negated by interband scattering depending on the manner in which bands converge. In the Zintl alloy, band convergence does not improve weighted mobility or the density-of-states effective mass. We trace the underlying reason to the fact that the bands converge at one k-point, which induces strong interband scattering of both the deformation-potential and the polar-optical kinds. The case contrasts with band convergence at distant k-points (as in the full Heusler), which better preserves the single-band scattering behavior thereby successfully leading to improved performance. Therefore, we suggest that band convergence as thermoelectric design principle is best suited to cases in which it occurs at distant k-points.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا