ﻻ يوجد ملخص باللغة العربية
Near field cosmology is practiced by studying the Local Group (LG) and its neighbourhood. The present paper describes a framework for simulating the near field on the computer. Assuming the LCDM model as a prior and applying the Bayesian tools of the Wiener filter (WF) and constrained realizations of Gaussian fields to the Cosmicflows-2 (CF2) survey of peculiar velocities, constrained simulations of our cosmic environment are performed. The aim of these simulations is to reproduce the LG and its local environment. Our main result is that the LG is likely a robust outcome of the LCDM scenario when subjected to the constraint derived from CF2 data, emerging in an environment akin to the observed one. Three levels of criteria are used to define the simulated LGs. At the base level, pairs of halos must obey specific isolation, mass and separation criteria. At the second level the orbital angular momentum and energy are constrained and on the third one the phase of the orbit is constrained. Out of the 300 constrained simulations 146 LGs obey the first set of criteria, 51 the second and 6 the third. The robustness of our LG factory enables the construction of a large ensemble of simulated LGs. Suitable candidates for high resolution hydrodynamical simulations of the LG can be drawn from this ensemble, which can be used to perform comprehensive studies of the formation of the LG
The local universe is the best known part of our universe. Within the CLUES project (http://clues-project.org - Constrained Local UniversE Simulations) we perform numerical simulations of the evolution of the local universe. For these simulations we
We make detailed theoretical predictions for the assembly properties of the Local Group (LG) in the standard LambdaCDM cosmological model. We use three cosmological N-body dark matter simulations from the CLUES project, which are designed to reproduc
We use the formalism of constrained Gaussian random field to compute a precise large scale simulation of the 60 Mpc/h volume of our Local Universe. We derive the constraints from the reconstructed peculiar velocities of the 2MASS Redshift Survey. We
We study the differences and similarities in the luminosities of bound, infalling and the so-called backsplash (Gill et al. 2005) galaxies of the Milky Way and M31 using a hydrodynamical simulation performed within the Constrained Local UniversE Simu
We identify Local Group (LG) analogs in the IllustrisTNG cosmological simulation, and use these to study two mass estimators for the LG: one based on the timing argument (TA) and one based on the virial theorem (VT). Including updated measurements of