ﻻ يوجد ملخص باللغة العربية
Nanodiamonds (NDs) hosting optically active defects are an important technical material for applications in quantum sensing, biological imaging, and quantum optics. The negatively charged silicon vacancy (SiV) defect is known to fluoresce in molecular sized NDs (1 to 6 nm) and its spectral properties depend on the quality of the surrounding host lattice. This defect is therefore a good probe to investigate the material properties of small NDs. Here we report unprecedented narrow optical transitions for SiV colour centers hosted in nanodiamonds produced using a novel high-pressure high-temperature (HPHT) technique. The SiV zero-phonon lines were measured to have an inhomogeneous distribution of 1.05 nm at 5 K across a sample of numerous NDs. Individual spectral lines as narrow as 354 MHz were measured for SiV centres in nanodiamonds smaller than 200 nm, which is four times narrower than the best SiV line previously reported for nanodiamonds. Correcting for apparent spectral diffusion yielded a homogeneous linewith of about 200 MHz, which is close to the width limit imposed by the radiative lifetime. These results demonstrate that the direct HPHT synthesis technique is capable of producing nanodiamonds with high crystal lattice quality, which are therefore a valuable technical material.
Single photon emitters with narrow linewidths are highly sought after for applications in quantum information processing and quantum communications. In this letter, we report on a bright, highly polarized near infrared single photon emitter embedded
The controlled creation of defect center---nanocavity systems is one of the outstanding challenges for efficiently interfacing spin quantum memories with photons for photon-based entanglement operations in a quantum network. Here, we demonstrate dire
Quantum emitters in hexagonal boron nitride (hBN) are promising building blocks for the realization of integrated quantum photonic systems. However, their spectral inhomogeneity currently limits their potential applications. Here, we apply tensile st
Hexagonal boron nitride (hBN) is a wide bandgap van der Waals material that has recently emerged as promising platform for quantum photonics experiments. In this work we study the formation and localization of narrowband quantum emitters in large fla
Quantum emitters in layered materials are promising candidates for applications in nanophotonics. Here we present a technique based on charge transfer to graphene for measuring the charge transition levels ($rm E_t$) of fluorescent defects in a wide