ﻻ يوجد ملخص باللغة العربية
We present three dimensional relativistic hydrodynamical simulations of a precessing jet interacting with the intracluster medium and compare the simulated jet structure with the observed structure of the Hydra A northern jet. For the simulations, we use jet parameters obtained in the parameter space study of the first paper in this series and probe different values for the precession period and precession angle. We find that for a precession period P = 1 Myr and a precession angle = 20 degree the model reproduces i) the curvature of the jet, ii) the correct number of bright knots within 20 kpc at approximately correct locations, and iii) the turbulent transition of the jet to a plume. The Mach number of the advancing bow shock = 1.85 is indicative of gentle cluster atmosphere heating during the early stages of the AGNs activity.
We present the first stage of an investigation of the interactions of the jets in the radio galaxy Hydra A with the intracluster medium. We consider the jet kinetic power, the galaxy and cluster atmosphere, and the inner structure of the radio source
Various radio galaxies show signs of having gone through episodic jet outbursts in the past. An example is the class of double-double radio galaxies (DDRGs). However, to follow the evolution of an individual source in real-time is impossible due to t
The radio lobes of Hydra A lie within cavities surrounded by a rim of enhanced X-ray emission in the intracluster gas. Although the bright rim appears cooler than the surrounding gas, existing Chandra data do not exclude the possibility that the rim
A key characteristic of many active galactic nuclei (AGN) is their variability, but its origin is poorly understood, especially in the radio domain. Williams et al. (2017) reported a ~50 per cent increase in peak flux density of the AGN in the Seyfer
The composition of the astrophysical relativistic jets remains uncertain. By kinetic particle-in-cell simulations, we show that the baryon component in the jet, or the so-called baryon loading effect (BLE), heavily affects relativistic jets transport