ﻻ يوجد ملخص باللغة العربية
It is well known that the interaction of quantum systems with the environment reduces the inherent quantum correlations. Under special circumstances the effect of decoherence can be reversed, for example, the interaction modeled by an amplitude damping channel can boost the teleportation fidelity from the classical to the quantum region for a bipartite quantum state. Here, we first show that this phenomena fails in the case of a quantum key distribution protocol. We further show that the technique of weak measurement can be used to slow down the process of decoherence, thereby helping to preserve the quantum key rate when one or both systems are interacting with the environment via an amplitude damping channel. Most interestingly, in certain cases weak measurement with post-selection where one considers both success and failure of the technique is shown to be more useful than without it when both systems interact with the environment.
Quantum key distribution (QKD offers a long-term solution to establish information-theoretically secure keys between two distant users. In practice, with a careful characterization of quantum sources and the decoy-state method, measure-device-indepen
Continuous-variable quantum key distribution (CV-QKD) with discrete modulation has received widespread attentions because of its experimental simplicity, lower-cost implementation and ease to multiplex with classical optical communication. Recently,
Device-independent quantum key distribution (DIQKD) exploits the violation of a Bell inequality to extract secure key even if the users devices are untrusted. Currently, all DIQKD protocols suffer from the secret key capacity bound, i.e., the secret
Quantum key distribution (QKD) allows two distant parties to share encryption keys with security based on physical laws. Experimentally, it has been implemented with optical means, achieving key rates of 1.26 Megabit/s over 50 kilometres (km) of stan
It is known that measurement-device-independent quantum key distribution (MDI-QKD) provides ultimate security from all types of side-channel attack against detectors at the expense of low key generation rate. Here, we propose MDI-QKD using 3-dimensio