ﻻ يوجد ملخص باللغة العربية
In the centenary year of Einsteins General Theory of Relativity, this paper reviews the current status of gravitational wave astronomy across a spectrum which stretches from attohertz to kilohertz frequencies. Sect. 1 of this paper reviews the historical development of gravitational wave astronomy from Einsteins first prediction to our current understanding the spectrum. It is shown that detection of signals in the audio frequency spectrum can be expected very soon, and that a north-south pair of next generation detectors would provide large scientific benefits. Sect. 2 reviews the theory of gravitational waves and the principles of detection using laser interferometry. The state of the art Advanced LIGO detectors are then described. These detectors have a high chance of detecting the first events in the near future. Sect. 3 reviews the KAGRA detector currently under development in Japan, which will be the first laser interferometer detector to use cryogenic test masses. Sect. 4 of this paper reviews gravitational wave detection in the nanohertz frequency band using the technique of pulsar timing. Sect. 5 reviews the status of gravitational wave detection in the attohertz frequency band, detectable in the polarisation of the cosmic microwave background, and discusses the prospects for detection of primordial waves from the big bang. The techniques described in sects. 1-5 have already placed significant limits on the strength of gravitational wave sources. Sects. 6 and 7 review ambitious plans for future space based gravitational wave detectors in the millihertz frequency band. Sect. 6 presents a roadmap for development of space based gravitational wave detectors by China while sect. 7 discusses a key enabling technology for space interferometry known as time delay interferometry.
Ground-based laser interferometers for gravitational-wave (GW) detection were first constructed starting 20 years ago and as of 2010 collection of several years worth of science data at initial design sensitivities was completed. Upgrades to the init
This paper focuses on the next detectors for gravitational wave astronomy which will be required after the current ground based detectors have completed their initial observations, and probably achieved the first direct detection of gravitational wav
The first generation of gravitational wave interferometric detectors has taken data at, or close to, their design sensitivity. This data has been searched for a broad range of gravitational wave signatures. An overview of gravitational wave search me
DM-Ice is a program towards the first direct detection search for dark matter in the Southern Hemisphere with a 250 kg-scale NaI(Tl) crystal array. It will provide a definitive understanding of the modulation signal reported by DAMA by running an arr
The current gravitational wave detectors have identified a surprising population of heavy stellar mass black holes, and an even larger population of coalescing neutron stars. The first observations have led to many dramatic discoveries and the confir