ترغب بنشر مسار تعليمي؟ اضغط هنا

Universality for a class of random band matrices

92   0   0.0 ( 0 )
 نشر من قبل Paul Bourgade
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the universality for the eigenvalue gap statistics in the bulk of the spectrum for band matrices, in the regime where the band width is comparable with the dimension of the matrix, $Wsim N$. All previous results concerning universality of non-Gaussian random matrices are for mean-field models. By relying on a new mean-field reduction technique, we deduce universality from quantum unique ergodicity for band matrices.



قيم البحث

اقرأ أيضاً

283 - Zhigang Bao , Laszlo Erdos 2015
We consider $Ntimes N$ Hermitian random matrices $H$ consisting of blocks of size $Mgeq N^{6/7}$. The matrix elements are i.i.d. within the blocks, close to a Gaussian in the four moment matching sense, but their distribution varies from block to blo ck to form a block-band structure, with an essential band width $M$. We show that the entries of the Greens function $G(z)=(H-z)^{-1}$ satisfy the local semicircle law with spectral parameter $z=E+mathbf{i}eta$ down to the real axis for any $eta gg N^{-1}$, using a combination of the supersymmetry method inspired by cite{Sh2014} and the Greens function comparison strategy. Previous estimates were valid only for $etagg M^{-1}$. The new estimate also implies that the eigenvectors in the middle of the spectrum are fully delocalized.
179 - Paul Bourgade 2018
We survey recent mathematical results about the spectrum of random band matrices. We start by exposing the Erd{H o}s-Schlein-Yau dynamic approach, its application to Wigner matrices, and extension to other mean-field models. We then introduce random band matrices and the problem of their Anderson transition. We finally describe a method to obtain delocalization and universality in some sparse regimes, highlighting the role of quantum unique ergodicity.
Consider $Ntimes N$ symmetric one-dimensional random band matrices with general distribution of the entries and band width $W geq N^{3/4+varepsilon}$ for any $varepsilon>0$. In the bulk of the spectrum and in the large $N$ limit, we obtain the foll owing results. (i) The semicircle law holds up to the scale $N^{-1+varepsilon}$ for any $varepsilon>0$. (ii) The eigenvalues locally converge to the point process given by the Gaussian orthogonal ensemble at any fixed energy. (iii) All eigenvectors are delocalized, meaning their ${rm L}^infty$ norms are all simultaneously bounded by $N^{-frac{1}{2}+varepsilon}$ (after normalization in ${rm L}^2$) with overwhelming probability, for any $varepsilon>0$. (iv )Quantum unique ergodicity holds, in the sense that the local ${rm L}^2$ mass of eigenvectors becomes equidistributed with overwhelming probability. We extend the mean-field reduction method cite{BouErdYauYin2017}, which required $W=Omega(N)$, to the current setting $W ge N^{3/4+varepsilon}$. Two new ideas are: (1) A new estimate on the generalized resolvent of band matrices when $W geq N^{3/4+varepsilon}$. Its proof, along with an improved fluctuation average estimate, will be presented in parts 2 and 3 of this series cite {BouYanYauYin2018,YanYin2018}. (2) A strong (high probability) version of the quantum unique ergodicity property of random matrices. For its proof, we construct perfect matching observables of eigenvector overlaps and show they satisfying the eigenvector moment flow equation cite{BouYau2017} under the matrix Brownian motions.
Recently, T. and M. Shcherbina proved a pointwise semicircle law for the density of states of one-dimensional Gaussian band matrices of large bandwidth. The main step of their proof is a new method to study the spectral properties of non-self-adjoint operators in the semiclassical regime. The method is applied to a transfer operator constructed from the supersymmetric integral representation for the density of states. We present a simpler proof of a slightly upgraded version of the semicircle law, which requires only standard semiclassical arguments and some peculiar elementary computations. The simplification is due to the use of supersymmetry, which manifests itself in the commutation between the transfer operator and a family of transformations of superspace, and was applied earlier in the context of band matrices by Constantinescu. Oth
We prove the Wigner-Dyson-Mehta conjecture at fixed energy in the bulk of the spectrum for generalized symmetric and Hermitian Wigner matrices. Previous results concerning the universality of random matrices either require an averaging in the energy parameter or they hold only for Hermitian matrices if the energy parameter is fixed. We develop a homogenization theory of the Dyson Brownian motion and show that microscopic universality follows from mesoscopic statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا