ﻻ يوجد ملخص باللغة العربية
Accurate identification of effective epidemic threshold is essential for understanding epidemic dynamics on complex networks. The existing studies on the effective epidemic threshold of the susceptible-infected-removed (SIR) model generally assume that all infected nodes immediately recover after the infection process, which more or less does not conform to the realistic situation of disease. In this paper, we systematically study the effect of arbitrary recovery rate on the SIR spreading dynamics on complex networks. We derive the theoretical effective epidemic threshold and final outbreak size based on the edge-based compartmental theory. To validate the proposed theoretical predictions, extensive numerical experiments are implemented by using asynchronous and synchronous updating methods. When asynchronous updating method is used in simulations, recovery rate does not affect the final state of spreading dynamics. But with synchronous updating, we find that the effective epidemic threshold decreases with recovery rate, and final outbreak size increases with recovery rate. A good agreement between the theoretical predictions and numerical results are observed on both synthetic and real-world networks. Our results extend the existing theoretical studies, and help us to understand the phase transition with arbitrary recovery rate.
We study the effect of heterogeneous temporal activations on epidemic spreading in temporal networks. We focus on the susceptible-infected-susceptible (SIS) model on activity-driven networks with burstiness. By using an activity-based mean-field appr
In this work we study a modified Susceptible-Infected-Susceptible (SIS) model in which the infection rate $lambda$ decays exponentially with the number of reinfections $n$, saturating after $n=l$. We find a critical decaying rate $epsilon_{c}(l)$ abo
We analyze the evolution of Sznajd Model with synchronous updating in several complex networks. Similar to the model on square lattice, we have found a transition between the state with no-consensus and the state with complete consensus in several co
Epidemic threshold is one of the most important features of the epidemic dynamics. Through a lot of numerical simulations in classic Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) models on various types of networks,
Metapopulation epidemic models describe epidemic dynamics in networks of spatially distant patches connected with pathways for migration of individuals. In the present study, we deal with a susceptible-infected-recovered (SIR) metapopulation model wh