ﻻ يوجد ملخص باللغة العربية
Non-classical state generation is an important component throughout experimental quantum science for quantum information applications and probing the fundamentals of physics. Here, we investigate permutations of quantum non-demolition quadrature measurements and single quanta addition/subtraction to prepare quantum superposition states in bosonic systems. The performance of each permutation is quantified and compared using several different non-classicality criteria including Wigner negativity, non-classical depth, and optimal fidelity with a coherent state superposition. We also compare the performance of our protocol using squeezing instead of a quadrature measurement and find that the purification provided by the quadrature measurement can significantly increase the non-classicality generated. Our approach is ideally suited for implementation in light-matter systems such as quantum optomechanics and atomic spin ensembles, and offers considerable robustness to initial thermal occupation.
We present a method to implement two-phonon interactions between mechanical resonators and spin qubits in hybrid setups, and show that these systems can be applied for the generation of nonclassical mechanical states even in the presence of dissipati
Models based on non-Hermitian Hamiltonians can exhibit a range of surprising and potentially useful phenomena. Physical realizations typically involve couplings to sources of incoherent gain and loss; this is problematic in quantum settings, because
Kernel methods are ubiquitous in classical machine learning, and recently their formal similarity with quantum mechanics has been established. To grasp the potential advantage of quantum machine learning, it is necessary to understand the distinction
We study two continuous variable systems (or two harmonic oscillators) and investigate their entanglement evolution under the influence of non-Markovian thermal environments. The continuous variable systems could be two modes of electromagnetic field
Quantum optics - the creation, manipulation and detection of non-classical states of light - is a fundamental cornerstone of modern physics, with many applications in basic and applied science. Achieving the same level of control over phonons, the qu