ﻻ يوجد ملخص باللغة العربية
Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, has attracted a great deal of interest recently owing to its potential for integration with Dirac materials to realize the quantum anomalous Hall effect (QAHE) and to develop novel spintronics devices. Here, we study the uniaxial magnetic anisotropy energy of single-crystalline CGT and determine that the magnetic easy axis is directed along the c-axis in its ferromagnetic phase. In addition, CGT is an insulator below the Curie temperature. These properties make CGT a potentially promising candidate substrate for integration with topological insulators for the realization of the high-temperature QAHE.
We investigated head-to-head domain walls in nanostrips of epitaxial $mathrm{Fe}_4mathrm{N}(001)$ thin films, displaying a fourfold magnetic anisotropy. Magnetic force microscopy and micromagnetic simulations show that the domain walls have specific
The emergence of two-dimensional (2D) materials has attracted a great deal of attention due to their fascinating physical properties and potential applications for future nanoelectronic devices. Since the first isolation of graphene, a Dirac material
Anisotropic magnetoresistance (AMR) of Cr2Ge2Te6 (CGT), a layered ferromagnetic insulator, is investigated under an applied hydrostatic pressure up to 2 GPa. The easy axis direction of the magnetization is inferred from the AMR saturation feature in
We report on the study of both perpendicular magnetic anisotropy (PMA) and Dzyaloshinskii-Moriya interaction (DMI) at an oxide/ferromagnetic metal (FM) interface, i.e. BaTiO3 (BTO)/CoFeB. Thanks to the functional properties of the BTO film and the ca
A new class of materials, Topological Crystalline Insulators (TCIs) have been shown to possess exotic surface state properties that are protected by mirror symmetry. These surface features can be enhanced if the surface-area-to-volume ratio of the ma