ﻻ يوجد ملخص باللغة العربية
Rare $d$-electron derived heavy-fermion properties of the solid-solution series LaCu$_3$Ru$_x$Ti$_{4-x}$O$_{12}$ were studied for $1 leq x leq 4$ by resistivity, susceptibility, specific-heat measurements, and magnetic-resonance techniques. The pure ruthenate ($x = 4$) is a heavy-fermion metal characterized by a resistivity proportional to $T^2$ at low temperatures $T$. The coherent Kondo lattice formed by the localized Ru 4$d$ electrons is screened by the conduction electrons leading to strongly enhanced effective electron masses. By increasing titanium substitution the Kondo lattice becomes diluted resulting in single-ion Kondo properties like in the paradigm $4f$-based heavy-fermion compound Ce$_x$La$_{1-x}$Cu$_{2.05}$Si$_2$ [M. Ocko {em et al.}, Phys. Rev. B textbf{64}, 195106 (2001)]. In LaCu$_3$Ru$_x$Ti$_{4-x}$O$_{12}$ the heavy-fermion behavior finally breaks down on crossing the metal-to-insulator transition close to $x = 2$.
The solid solution between the ferromagnetic metal SrRuO$_3$ and the enhanced paramagnetic metal SrRhO$_3$ was recently reported [K. Yamaura et al., Phys. Rev. B 69 (2004) 024410], and an unexpected feature was found in the specific heat data at $x$=
Triple-layered ruthenate Sr$_4$Ru$_3$O$_{10}$ shows a first-order itinerant metamagnetic transition for in-plane magnetic fields. Our experiments revealed rather surprising behavior in the low-temperature transport properties near this transition. Th
The Berry curvature in magnetic systems is attracting interest due to the potential tunability of topological features via the magnetic structure. $f$-electrons, with their large spin-orbit coupling, abundance of non-collinear magnetic structures and
Successive magnetic phase transitions at $T_1$=17.5 K and $T_2$=18.5 K in Gd$_3$Ru$_4$Al$_{12}$, with a distorted kagome lattice of Gd ions, is studied using resonant X-ray diffraction with polarization analysis. It has been suggested that in this co
Sr$_4$Ru$_3$O$_{10}$, the $n$ = 3 member of the Ruddlesden-Popper type ruthenate Sr$_{n+1}$Ru$_n$O$_{3n+1}$, is known to exhibit a peculiar metamagnetic transition in an in-plane magnetic field. However, the nature of both the temperature- and field-