ﻻ يوجد ملخص باللغة العربية
The decay rates of quasistable states in quantum field theories are usually calculated using instanton methods. Standard derivations of these methods rely in a crucial way upon deformations and analytic continuations of the physical potential, and on the saddle point approximation. While the resulting procedure can be checked against other semi-classical approaches in some one-dimensional cases, it is challenging to trace the role of the relevant physical scales, and any intuitive handle on the precision of the approximations involved are at best obscure. In this paper, we use a physical definition of the tunneling probability to derive a formula for the decay rate in both quantum mechanics and quantum field theory directly from the Minkowski path integral, without reference to unphysical deformations of the potential. There are numerous benefits to this approach, from non-perturbative applications to precision calculations and aesthetic simplicity.
Perturbative quantum field theory usually uses second quantisation and Feynman diagrams. The worldline formalism provides an alternative approach based on first quantised particle path integrals, similar in spirit to string perturbation theory. Here
In this paper we compute the leading order Casimir energy for the electromagnetic field (EM) in an open ended perfectly conducting rectangular waveguide in three spatial dimensions by a direct approach. For this purpose we first obtain the second qua
A new general formalism for determining the electric multipole polarizabilities of quantum (atomic and nuclear) bound systems based on the use of the transition matrix in momentum space has been developed. As distinct from the conventional approach w
The false vacua of some potentials do not decay via Euclidean bounces. This typically happens for tunneling actions with a flat direction (in field configuration space) that is lifted by a perturbation into a sloping valley, pushing the bounce off to
We study the Gribov problem within a Hamiltonian formulation of pure Yang-Mills theory. For a particular gauge fixing, a finite volume modification of the axial gauge, we find an exact characterization of the space of gauge-inequivalent gauge configurations.