ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiferroic properties of uniaxially compressed orthorhombic HoMnO3 thin films

104   0   0.0 ( 0 )
 نشر من قبل Kenta Shimamoto
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiferroic properties of orthorhombic HoMnO3 (Pbnm space group) are significantly modified by epitaxial compressive strain along the a-axis. We are able to focus on the effect of strain solely along the a-axis by using an YAlO3 (010) substrate, which has only a small lattice mismatch with HoMnO3 along the other in-plane direction (the c-axis). Multiferroic properties of strained and relaxed HoMnO3 thin films are compared with those reported for bulk, and are found to differ widely. A relaxed film exhibits bulk-like properties such as a ferroelectric transition temperature of 25 K and an incommensurate antiferromagnetic order below 39 K, with an ordering wave vector of (0 qb 0) with qb ~ 0.41 at 10 K. A strained film becomes ferroelectric already at 37.5 K and has an incommensurate magnetic order with qb ~ 0.49 at 10 K.



قيم البحث

اقرأ أيضاً

We have grown epitaxial thin films of multiferroic BiMnO$_3$ using pulsed laser deposition. The films were grown on SrTiO$_3$ (001) substrates by ablating a Bi-rich target. Using x-ray diffraction we confirmed that the films were epitaxial and the st oichiometry of the films was confirmed using Auger electron spectroscopy. The films have a ferromagnetic Curie temperature ($T_C$) of 85$pm$5 K and a saturation magnetization of 1 $mu_B$/Mn. The electric polarization as a function of electric field ($P-E$) was measured using an interdigital capacitance geometry. The $P-E$ plot shows a clear hysteresis that confirms the multiferroic nature of the thin films.
Lattice structure can dictate electronic and magnetic properties of a material. Especially, reconstruction at a surface or heterointerface can create properties that are fundamentally different from those of the corresponding bulk material. We have i nvestigated the lattice structure on the surface and in the thin films of epitaxial SrRuO3 with the film thickness up to 22 pseudo-cubic unit cells (u.c.), using the combination of surface sensitive low energy electron diffraction and bulk sensitive scanning transmission electron microscopy. Our analysis indicates that, in contrast to many perovskite oxides, the RuO6 tilt and rotational distortions appear even in single unit cell SrRuO3 thin films on cubic SrTiO3, while the full relaxation to the bulk-like orthorhombic structure takes 3-4 u.c. from the interface for thicker films. Yet the TiO6 octahedra of the substrate near the interface with SrRuO3 films show no sign of distortion, unlike those near the interface with CaRuO3 films. Two orthogonal in-plane rotated structural domains are identified. These structural distortions are essential for the nature of the thickness dependent transport and magnetism in ultrathin films.
198 - H. Bea , M. Bibes , F. Ott 2007
We have combined neutron scattering and piezoresponse force microscopy to study the relation between the exchange bias observed in CoFeB/BiFeO3 heterostructures and the multiferroic domain structure of the BiFeO3 films. We show that the exchange fiel d scales with the inverse of the ferroelectric and antiferromagnetic domain size, as expected from Malozemoffs model of exchange bias extended to multiferroics. Accordingly, polarized neutron reflectometry reveals the presence of uncompensated spins in the BiFeO3 film at the interface with the CoFeB. In view of these results we discuss possible strategies to switch the magnetization of a ferromagnet by an electric field using BiFeO3.
We report a study on the thermodynamic stability and structure analysis of the epitaxial BiFeO3 (BFO) thin films grown on YAlO3 (YAO) substrate. First we observe a phase transition of MC-MA-T occurs in thin sample (<60 nm) with an utter tetragonal-li ke phase (denoted as MII here) with a large c/a ratio (~1.23). Specifically, MII phase transition process refers to the structural evolution from a monoclinic MC structure at room temperature to a monoclinic MA at higher temperature (150oC) and eventually to a presence of nearly tetragonal structure above 275oC. This phase transition is further confirmed by the piezoforce microscopy measurement, which shows the rotation of polarization axis during the phase transition. A systematic study on structural evolution with thickness to elucidate the impact of strain state is performed. We note that the YAO substrate can serve as a felicitous base for growing T-like BFO because this phase stably exists in very thick film. Thick BFO films grown on YAO substrate exhibit a typical morphotropic-phase-boundary-like feature with coexisting multiple phases (MII, MI, and R) and a periodic stripe-like topography. A discrepancy of arrayed stripe morphology in different direction on YAO substrate due to the anisotropic strain suggests a possibility to tune the MPB-like region. Our study provides more insights to understand the strain mediated phase co-existence in multiferroic BFO system.
La0.67Sr0.33MnO3 (LSMO) thin films under compressive strain have an orthorhombic symmetry with (1-10)o and (001)o in-plane orientations. (The subscript o denotes the orthorhombic symmetry.) Here, we grew LSMO on cubic (LaAlO3)0.3-(Sr2AlTaO6)0.7 (LSAT ) substrates and observed a uniaxial contribution to the magnetic anisotropy which is related to the orthorhombic crystal structure. Since the lattice mismatch is equal in the two directions, the general understanding of anisotropy in LSMO, which relates the uniaxial anisotropy to differences in strain, cannot explain the results. These findings suggest that the oxygen octahedra rotations associated with the orthorhombic structure, possibly resulting in different Mn-O-Mn bond angles and therefore a change in magnetic coupling between the [1-10]o and [001]o directions, determine the anisotropy. We expect these findings to lead to a better understanding of the microscopic origin of the magnetocrystalline anisotropy in LSMO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا