ﻻ يوجد ملخص باللغة العربية
New operation mode, separated flow mode, has been developed for in-flight proton decay experiments with the SHARAQ spectrometer. In the separated flow mode, the protons and the heavy-ion products are separated and measured in coincidence at two different focal planes of SHARAQ. The ion-optical properties of the new mode were studied by using a proton beam at $246~{rm MeV}$, and the momentum vector was properly reconstructed from the parameters measured in the focal plane of SHARAQ. In the experiment with the $({}^{16}{rm O},{}^{16}{rm F})$ reaction at a beam energy of $247~{rm MeV/u}$, the outgoing ${}^{15}{rm O}+p$ produced by the decay of ${}^{16}{rm F}$ were measured in coincidence with SHARAQ. High energy resolutions of $100~{rm keV}$ (FWHM) and $sim 2~{rm MeV}$ were achieved for the relative energy of $535~{rm keV}$, and the ${}^{16}{rm F}$ energy of $3940~{rm MeV}$, respectively.
A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEterminiation in fission Research (SPIDER) is a $2E-2v$ spectrometer designed to measure the mass of light fission fragm
The search for neutrinoless double beta decay requires increasingly advanced methods of background reduction. A bold approach to solving this problem, in experiments using Xe-136, is to extract and identify the daughter Ba-136 ion produced by double
An electrostatic time-of-flight detector named E-MCP has been developed for quick diagnostics of circulating beam and timing measurement in mass spectrometry at the Rare-RI Ring in RIKEN. The E-MCP detector consists of a conversion foil, potential gr
The Multi-Grid detector technology has evolved from the proof-of-principle and characterisation stages. Here we report on the performance of the Multi-Grid detector, the MG.CNCS prototype, which has been installed and tested at the Cold Neutron Chopp
A new Short-Orbit Spectrometer (SOS) has been constructed and installed within the experimental facility of the A1 collaboration at Mainz Microtron (MAMI), with the goal to detect low-energy pions. It is equipped with a Browne-Buechner magnet and a d