ﻻ يوجد ملخص باللغة العربية
The Neutron star Interior Composition ExploreR (NICER) is expected to launch in early 2017 and will gather X-ray data on neutron stars and other high-energy sources from a berth on the International Space Station. Its prime scientific goal is to measure the masses and radii of non-accreting neutron stars via fits to the energy-dependent waveforms produced by the rotation of hot spots on their surfaces. These measurements will provide valuable input to theoretical models of cold matter beyond nuclear density. Here we propose that PSR J1614$-$2230, despite its low count rate, is a promising source to observe with NICER. The reason is that XMM-Newton observations suggest that the fractional oscillation amplitude from PSR J1614$-$2230 could be high enough that this star cannot be very compact. We show that if we analyze 0.5 Ms of NICER data and 0.1 Ms of nearby off-source data and combine that analysis with the known mass of this star, we would find a robust lower limit to the radius with a statistical uncertainty of only $sim 0.5-0.7$ km. We also show that even if there is an unmodeled nonthermal component modulated at the pulsation frequency, good statistical fits could rule out significant biases. The low count rate will make reliable upper limits on the radius difficult, but the lower limit could rule out some equations of state that are currently being discussed. This analysis would require a good estimate of the non-source background, so Chandra observations of the vicinity of PSR J1614$-$2230 would be helpful.
We report the detection of X-ray pulsations from the rotation-powered millisecond-period pulsars PSR J0740+6620 and PSR J1614-2230, two of the most massive neutron stars known, using observations with the Neutron Star Interior Composition Explorer (N
Both the mass and radius of the millisecond pulsar PSR J0030+0451 have been inferred via pulse-profile modeling of X-ray data obtained by NASAs NICER mission. In this Letter we study the implications of the mass-radius inference reported for this sou
We report on Bayesian parameter estimation of the mass and equatorial radius of the millisecond pulsar PSR J0030$+$0451, conditional on pulse-profile modeling of Neutron Star Interior Composition Explorer (NICER) X-ray spectral-timing event data. We
PSR J0740$+$6620 has a gravitational mass of $2.08pm 0.07~M_odot$, which is the highest reliably determined mass of any neutron star. As a result, a measurement of its radius will provide unique insight into the properties of neutron star core matter
PSR J0537-6910, also known as the Big Glitcher, is the most prolific glitching pulsar known, and its spin-induced pulsations are only detectable in X-ray. We present results from analysis of 2.7 years of NICER timing observations, from 2017 August to