ﻻ يوجد ملخص باللغة العربية
The two degenerate ground states of the anisotropic Heisenberg (XY) spin model of a chain of qubits (pseudo-spins) can encode quantum information, but their degree of protection against local perturbations is known to be only partial. We examine the properties of the system in the presence of non-local spin-spin interactions, possibly emerging from the quantum electrodynamics of the device. We find a phase distinct from the XY phase admitting two ground states which are highly protected against all local field perturbations, persisting across a range of parameters. In the context of the XY chain we discuss how the coupling between two ground states can be used to observe signatures of topological edge states in a small controlled chain of superconducting transmon qubits.
Motivated by recent developments on the fabrication and control of semiconductor-based quantum dot qubits, we theoretically study a finite system of tunnel-coupled quantum dots with the electrons interacting through the long-range Coulomb interaction
We theoretically study single and two-qubit dynamics in the circuit QED architecture. We focus on the current experimental design [Wallraff et al., Nature 431, 162 (2004); Schuster et al., Nature 445, 515 (2007)] in which superconducting charge qubit
We present theory and calculations for coherent high-fidelity quantum control of many-particle states in semiconductor quantum wells. We show that coupling a two-electron double quantum dot to a terahertz optical source enables targeted excitations t
Quantum phase transitions are ubiquitous in many exotic behaviors of strongly-correlated materials. However the microscopic complexity impedes their quantitative understanding. Here, we observe thoroughly and comprehend the rich strongly-correlated p
Radiation sensors based on the heating effect of the absorbed radiation are typically relatively simple to operate and flexible in terms of the input frequency. Consequently, they are widely applied, for example, in gas detection, security, THz imagi