ﻻ يوجد ملخص باللغة العربية
The Leggett-Garg inequality, an analogue of Bells inequality involving correlations of measurements on a system at different times, stands as one of the hallmark tests of quantum mechanics against classical predictions. The phenomenon of neutrino oscillations should adhere to quantum-mechanical predictions and provide an observable violation of the Leggett-Garg inequality. We demonstrate how oscillation phenomena can be used to test for violations of the classical bound by performing measurements on an ensemble of neutrinos at distinct energies, as opposed to a single neutrino at distinct times. A study of the MINOS experiments data shows a greater than $6{sigma}$ violation over a distance of 735 km, representing the longest distance over which either the Leggett-Garg inequality or Bells inequality has been tested.
Neutrino oscillations occur due to non-zero masses and mixings and most importantly they are believed to maintain quantum coherence even over astrophysical length scales. In the present study, we explore the quantumness of three flavour neutrino osci
By weakly measuring the polarization of a photon between two strong polarization measurements, we experimentally investigate the correlation between the appearance of anomalous values in quantum weak measurements, and the violation of realism and non
In contrast to Bells inequalities which test the correlations between multiple spatially separated systems, the Leggett-Garg inequalities test the temporal correlations between measurements of a single system. We experimentally demonstrate the violat
Weak measurement has provided new insight into the nature of quantum measurement, by demonstrating the ability to extract average state information without fully projecting the system. For single qubit measurements, this partial projection has been d
The Leggett-Garg inequality (LGI) distinguishes nonmacrorealistic channels from macrorealistic ones by constraining the experimental outcomes of the underlying system. In this work, we propose a class of the channels which, initially, cannot violate