Extracting the optimal amount of power from an array of tidal turbines requires an intricate understanding of tidal dynamics and the effects of turbine placement on the local and regional scale flow. Numerical models have contributed significantly towards this understanding, and more recently, adjoint-based modelling has been employed to optimise the positioning of the turbines in an array in an automated way and improve on simple, regular man-made configurations. Adjoint-based optimisation of high-resolution and ideally 3D transient models is generally a very computationally expensive problem. As a result, existing work on the adjoint optimisation of tidal turbine placement has been mostly limited to steady-state simulations in which very high, non-physical values of the background viscosity are required to ensure that a steady-state solution exists. However, such compromises may affect the reliability of the modelled turbines, their wakes and interactions, and thus bring into question the validity of the computed optimal turbine positions. This work considers a suite of idealised simulations of flow past tidal turbine arrays in a 2D channel. It compares four regular array configurations, detailed by Divett et al. (2013), with the configuration found through adjoint optimisation in a steady-state, high-viscosity setup. The optimised configuration produces considerably more power. The same configurations are then used to produce a suite of transient simulations that do not use constant high-viscosity, and instead use large eddy simulation (LES) to parameterise the resulting turbulent structures. It is shown that the LES simulations produce less power than that predicted by the constant high-viscosity runs. Nevertheless, they still follow the same trends in the power curve throughout time, with optimised layouts continuing to perform significantly better than simplified configurations.