On the time constant of high dimensional first passage percolation


الملخص بالإنكليزية

We study the time constant $mu(e_{1})$ in first passage percolation on $mathbb Z^{d}$ as a function of the dimension. We prove that if the passage times have finite mean, $$lim_{d to infty} frac{mu(e_{1}) d}{log d} = frac{1}{2a},$$ where $a in [0,infty]$ is a constant that depends only on the behavior of the distribution of the passage times at $0$. For the same class of distributions, we also prove that the limit shape is not an Euclidean ball, nor a $d$-dimensional cube or diamond, provided that $d$ is large enough.

تحميل البحث